19 research outputs found

    Application of Level Set Methods for burned area mapping and evaluation against DLR's TET-1 hotspot data - a case study in Portugal

    Get PDF
    Automated extraction of fire-affected areas from satellite images is a crucial task for large scale, near real-time damage assessment. The discrimination between burned and unburned pixels is usually done by differentiating pre-/post scenes and categorizing the change rate, or by using empirically derived thresholds on a single scene. These approaches, however, require the setting of a threshold value for the discrimination, which has to be derived empirically for constricted region of interest. It is therefore not well adoptable to different regions of interest, turning this approach inappropriate for automatic extraction of burned areas in large, heterogeneous study areas. The aim of this paper is to test the Active Contour Level Set method, which does not rely on any thresholds, regarding geometric accuracy of burned area extraction

    Wildfire monitoring using satellite images, ontologies and linked geospatial data

    Get PDF
    Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many scientific and application domains. When Earth Observation data is coupled with other data sources many pioneering applications can be developed. In this paper we show how Earth Observation data, ontologies, and linked geospatial data can be combined for the development of a wildfire monitoring service that goes beyond applications currently deployed in various Earth Observation data centers. The service has been developed in the context of European project TELEIOS that faces the challenges of extracting knowledge from Earth Observation data head-on, capturing this knowledge by semantic annotation encoded using Earth Observation ontologies, and combining these annotations with linked geospatial data to allow the development of interesting applications

    Wildfire monitoring via the integration of remote sensing with innovative information technologies

    Get PDF
    In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers, including land use/land cover, administrative boundaries, road and rail network, points of interest, and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters and that have activated Emergency Support Services at a European level in the framework of the operational GMES projects SAFER and LinkER. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA's in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of state-of-the-art Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. TELEIOS aims at the development of fully automatic processing chains reliant on a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the creation of thematic maps and added-value services. The first objective is achieved with the use of advanced Array Database technologies, such as MonetDB, to enable efficiency in accessing large archives of image data and metadata in a fully transparent way, without worrying for their format, size, and location, as well as efficiency in processing such data using state-of-the-art implementations of image processing algorithms expressed in a high-level Scientific Query Language (SciQL). The product refinement is realized through the application of update operations that incorporate human evidence and human logic, with semantic content extracted from thematic information coming from auxiliary geo-information layers and sources, for reducing considerably the number of false alarms in fire detection, and improving the credibility of the burnt area assessment. The third objective is approached via the combination of the derived fire-products with Linked Geospatial Data, structured accordingly and freely available in the web, using Semantic Web technologies. These technologies are built on top of a robust and modular computational environment, to facilitate several wildfire applications to run efficiently, such as real-time fire detection, fire-front propagation monitoring, rapid burnt area mapping, after crisis detailed burnt scar mapping, and time series analysis of burnt areas. The approach adopted allows ISARS/NOA to routinely serve requests from the end-user community, irrespective of the area of interest and its extent, the observation time period, or the data volume involved, granting the opportunity to combine innovative IT solutions with remote sensing techniques and

    Operational Wildfire Monitoring and Disaster Management Support Using State-of-the-art EO and Information Technologies

    Get PDF
    Fires have been one of the main driving forces in the evolution of plants and ecosystems, determining the current structure and composition of the Landscapes. However, significant alterations in the fire regime have occurred in the recent decades, primarily as a result of socioeconomic changes, increasing dramatically the catastrophic impacts of wildfires as it is reflected in the increase during the 20th century of both, number of fires and the annual area burnt. Therefore, the establishment of a permanent robust fire monitoring system is of paramount importance to implement an effective environmental management policy. Such an integrated system has been developed in the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA). Volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters in the framework of the operational GMES projects SAFER and LinkER addressing fire emergency response and emergency support needs for the entire European Union. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA’s in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integra

    Managing big, linked, and open earth-observation data: Using the TELEIOS/LEO software stack

    Get PDF
    Big Earth-observation (EO) data that are made freely available by space agencies come from various archives. Therefore, users trying to develop an application need to search within these archives, discover the needed data, and integrate them into their application. In this article, we argue that if EO data are published using the linked data paradigm, then the data discovery, data integration, and development of applications becomes easier. We present the life cycle of big, linked, and open EO data and show how to support their various stages using the software stack developed by the European Union (EU) research projects TELEIOS and the Linked Open EO Data for Precision Farming (LEO). We also show how this stack of tools can be used to implement an operational wildfire-monitoring service

    Operational wildfire monitoring and disaster management support using state-of-the-art EO and Information Technologies

    Get PDF
    textabstractFires have been one of the main driving forces in the evolution of plants and ecosystems, determining the current structure and composition of the Landscapes. However, significant alterations in the fire regime have occurred in the recent decades, primarily as a result of socioeconomic changes, increasing dramatically the catastrophic impacts of wildfires as it is reflected in the increase during the 20th century of both, number of fires and the annual area burnt. Therefore, the establishment of a permanent robust fire monitoring system is of paramount importance to implement an effective environmental management policy. Such an integrated system has been developed in the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA). Volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters in the framework of the operational GMES projects SAFER and LinkER addressing fire emergency response and emergency support needs for the entire European Union. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA’s in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of innovative Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. Through this activity a fully automatic processing chain has been developed reliant on, a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the timely creation of fire extent and damage thematic maps. These technologies are built on top of a robust and modular computational environment, to facilitate several wildfire applications to run efficiently, such as real-time fire detection, fire-front propagation monitoring, rapid burnt area mapping, after crisis detailed burnt scar mapping, and time series analysis of burnt areas. The approach adopted allows ISARS/NOA to routinely serve requests from the end-user community, such as Civil Protection and Forestry Services, irrespective of the location and size of the area of interest, the observation time period, or the size of data volume involved, granting the opportunity to combine innovative IT solutions with remote sensing techniques and algorithms for wildfire monitoring and management

    Real-Time Wildfire Monitoring Using Scientific Database and Linked Data Technologies

    Get PDF
    We present a real-time wildfire monitoring service that exploits satellite images and linked geospatial data to detect hotspots and monitor the evolution of fire fronts. The service makes heavy use of scientific database technologies (array databases, SciQL, data vaults) and linked data technologies (ontologies, linked geospatial data, stSPARQL) and is implemented on top of MonetDB and Strabon. The service is now operational at the National Observatory of Athens and has been used during the previous summer by emergency managers monitoring wildfires in Greece

    Toward a reference architecture based science gateway framework with embedded e‐learning support

    Get PDF
    Science gateways have been widely utilized by a large number of user communities to simplify access to complex distributed computing infrastructures. While science gateways are still becoming increasingly popular and the number of user communities is growing, the fast and efficient creation of new science gateways and the flexibility to deploy these gateways on-demand on heterogeneous computational resources, remain a challenge. Additionally, the increase in the number of users, especially with very different backgrounds, requires intuitive embedded e-learning tools that support all stakeholders to find related learning material and to guide the learning process. This paper introduces a novel science gateway framework that addresses these challenges. The framework supports the creation, publication, selection, and deployment of cloud-based reference architectures that can be automatically instantiated and executed even by nontechnical users. The framework also incorporates a knowledge repository exchange and learning module that provides embedded e-learning support. To demonstrate the feasibility of the proposed solution, two scientific case studies are presented based on the requirements of the plasmasphere, ionosphere, and thermosphere research communities

    Building Virtual Earth Observatories using Ontologies and Linked Geospatial Data

    Get PDF
    TELEIOS is a European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery of knowledge that can be used in applications. To achieve this, TELEIOS builds on scientific database technologies (array databases, SciQL, data vaults), Semantic Web technologies (stRDF and stSPARQL) and linked geospatial data. In this technical communication we outline the TELEIOS advancements to the state of the art and give an overview of its technical contributions up to today

    Strategic positioning of the ‘ERATOSTHENES Research Centre’ and exploration of new R&D opportunities in the fields of Earth Surveillance and Space-Based of the Environment

    Get PDF
    The aim of this paper is to present our strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC), established within Cyprus University of Technology (CUT), into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR), which will provide the highest quality of related services both on the National, European and International levels. The ‘EXCELSIOR’ project is a Horizon 2020 Teaming project, addressing the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The ERCis already an established player in the local community and has excellent active collaboration with actors from various sectors in (a) the government, (b) industry, (c) local organisations, and (d) society. In order to further engage users and citizens and to become more attractive to international research and education community, the Centre aims to be fully involved in strategic positioning on the national level, but also in Europe, the Middle East region and internationally. Some examples of how space technologies are integrated with other tools or techniques such as UAV, field spectroscopy, micro-sensors, EO space/in-situ sensors etc. for the systematic monitoring of the environment is shown. Indeed such examples fulfills the objectives of the COPERNICUS academy network (in which ERC is a member) for empowering the next generation of researchers, scientists, and entrepreneurs with suitable skill sets to use Copernicus data and information services to their full potential. Finally, opportunities for future collaboration and investments with the ERC in the Eastern Mediterranean Region are stated. Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the Institute for Astronomy and Astrophysics Space Applications and Remote Sensing of the National Observatory of Athens (NOA), the German Leibniz Institute for Tropospheric Research (TROPOS) and the Cyprus’ Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW)
    corecore