6 research outputs found

    The impact of Holocene deglaciation and glacial dynamics on the landscapes and geomorphology of Potter Peninsula, King George Island (Isla 25 Mayo), NW Antarctic Peninsula

    Get PDF
    The timing and impact of deglaciation and Holocene readvances on the terrestrial continental margins of the Antarctic Peninsula (AP) have been well-studied but are still debated. Potter Peninsula on King George Island (KGI) (Isla 25 de Mayo), South Shetland Islands (SSI), NW Antarctic Peninsula, has a detailed assemblage of glacial landforms and stratigraphic exposures for constraining deglacial landscape development and glacier readvances. We undertook new morphostratigraphic mapping of the deglaciated foreland of the Warszawa Icefield, an outlet of the Bellingshausen (Collins) Ice Cap on Potter Peninsula, using satellite imagery and new lithofacies recognition and interpretations, combined with new chronostratigraphic analysis of stratigraphic sections, lake sediments, and moraine deposits. Results show that the deglaciation on Potter Peninsula began before c. 8.2 ka. Around c. 7.0 ka, the Warszawa Icefield and the marine-facing Fourcade Glacier readvanced across Potter Peninsula and to the outer part of Potter Cove. Evidence of further readvances on Potter Peninsula was absent until the Warszawa Icefield margin was landward of its present position on three occasions: c. 1.7–1.4 ka, after c. 0.7 ka (most likely c. 0.5–0.1 ka), and by 1956 CE. The timing of Holocene deglaciation and glacier fluctuations on Potter Peninsula are broadly coeval with other glacier- and ice-free areas on the SSI and the northern AP and likely driven by interactions between millennial–centennial-scale changes in solar insolation and irradiance, the southern westerlies, and the Southern Annular Mode

    Holocene deglaciation and glacier readvances on the Fildes Peninsula and King George Island (Isla 25 de Mayo), South Shetland Islands, NW Antarctic Peninsula

    No full text
    To provide insights into glacier-climate dynamics of the South Shetland Islands (SSI), NW Antarctic Peninsula, we present a new deglaciation and readvance model for the Bellingshausen Ice Cap (BIC) on Fildes Peninsula and for King George Island/Isla 25 de Mayo (KGI) ~62°S. Deglaciation on KGI began after c. 15 cal. ka BP and had progressed to within present-day limits on the Fildes Peninsula, its largest ice-free peninsula, by c. 6.6–5.3 cal. ka BP. Probability density phase analysis of chronological data constraining Holocene glacier advances on KGI revealed up to eight 95% probability ‘gaps’ during which readvances could have occurred. These are grouped into four stages – Stage 1: a readvance and marine transgression, well-constrained by field data, between c. 7.4 and 6.6 cal. ka BP; Stage 2: four probability ‘gaps’, less well-constrained by field data, between c. 5.3 and 2.2 cal. ka BP; Stage 3: a well-constrained but restricted ‘readvance’ between c. 1.7 and 1.5 cal. ka BP; Stage 4: two further minor ‘readvances’, one less well-constrained by field data between c. 1.3 and 0.7 cal. ka BP (68% probability), and a ‘final’ well-constrained ‘readvance’ after <0.7 cal. ka BP. The Stage 1 readvance occurred as colder and more negative Southern Annular Mode (SAM)-like conditions developed, and marginally stronger/poleward shifted westerly winds led to more storms and precipitation on the SSI. Readvances after c. 5.3 cal. ka BP were possibly more frequent, driven by reducing spring/summer insolation at 62°S and negative SAM-like conditions, but weaker (equatorward shifted) Westerlies over the SSI led to reduced storminess, restricting readvances within or close to present day limits. Late Holocene readvances were anti-phased with subaquatic freshwater moss layers in lake records unaffected by glaciofluvial inputs. Retreat from ‘Neoglacial’ glacier limits and the recolonisation of lakes by subaquatic freshwater moss after 1950 CE is associated with recent warming/more positive SAM-like conditions

    DataSheet1_The impact of Holocene deglaciation and glacial dynamics on the landscapes and geomorphology of Potter Peninsula, King George Island (Isla 25 Mayo), NW Antarctic Peninsula.pdf

    No full text
    The timing and impact of deglaciation and Holocene readvances on the terrestrial continental margins of the Antarctic Peninsula (AP) have been well-studied but are still debated. Potter Peninsula on King George Island (KGI) (Isla 25 de Mayo), South Shetland Islands (SSI), NW Antarctic Peninsula, has a detailed assemblage of glacial landforms and stratigraphic exposures for constraining deglacial landscape development and glacier readvances. We undertook new morphostratigraphic mapping of the deglaciated foreland of the Warszawa Icefield, an outlet of the Bellingshausen (Collins) Ice Cap on Potter Peninsula, using satellite imagery and new lithofacies recognition and interpretations, combined with new chronostratigraphic analysis of stratigraphic sections, lake sediments, and moraine deposits. Results show that the deglaciation on Potter Peninsula began before c. 8.2 ka. Around c. 7.0 ka, the Warszawa Icefield and the marine-facing Fourcade Glacier readvanced across Potter Peninsula and to the outer part of Potter Cove. Evidence of further readvances on Potter Peninsula was absent until the Warszawa Icefield margin was landward of its present position on three occasions: c. 1.7–1.4 ka, after c. 0.7 ka (most likely c. 0.5–0.1 ka), and by 1956 CE. The timing of Holocene deglaciation and glacier fluctuations on Potter Peninsula are broadly coeval with other glacier- and ice-free areas on the SSI and the northern AP and likely driven by interactions between millennial–centennial-scale changes in solar insolation and irradiance, the southern westerlies, and the Southern Annular Mode.</p

    Video1_The impact of Holocene deglaciation and glacial dynamics on the landscapes and geomorphology of Potter Peninsula, King George Island (Isla 25 Mayo), NW Antarctic Peninsula.MP4

    No full text
    The timing and impact of deglaciation and Holocene readvances on the terrestrial continental margins of the Antarctic Peninsula (AP) have been well-studied but are still debated. Potter Peninsula on King George Island (KGI) (Isla 25 de Mayo), South Shetland Islands (SSI), NW Antarctic Peninsula, has a detailed assemblage of glacial landforms and stratigraphic exposures for constraining deglacial landscape development and glacier readvances. We undertook new morphostratigraphic mapping of the deglaciated foreland of the Warszawa Icefield, an outlet of the Bellingshausen (Collins) Ice Cap on Potter Peninsula, using satellite imagery and new lithofacies recognition and interpretations, combined with new chronostratigraphic analysis of stratigraphic sections, lake sediments, and moraine deposits. Results show that the deglaciation on Potter Peninsula began before c. 8.2 ka. Around c. 7.0 ka, the Warszawa Icefield and the marine-facing Fourcade Glacier readvanced across Potter Peninsula and to the outer part of Potter Cove. Evidence of further readvances on Potter Peninsula was absent until the Warszawa Icefield margin was landward of its present position on three occasions: c. 1.7–1.4 ka, after c. 0.7 ka (most likely c. 0.5–0.1 ka), and by 1956 CE. The timing of Holocene deglaciation and glacier fluctuations on Potter Peninsula are broadly coeval with other glacier- and ice-free areas on the SSI and the northern AP and likely driven by interactions between millennial–centennial-scale changes in solar insolation and irradiance, the southern westerlies, and the Southern Annular Mode.</p
    corecore