13 research outputs found

    Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis

    Get PDF
    Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2–23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)n repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS

    Interplay between Progranulin and TDP-43 in the pathogenesis of Amyotrophic Lateral Sclerosis

    No full text
    Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) are two related neurodegenerative disorders, representing the ends of a disease spectrum, with many intermediate forms in between. Not only clinically, but also at the genetic and pathological level, there is growing evidence for an overlap. TDP-43 has a central position in the pathogenesis: TDP-43 pathology is found in more than 95% of ALS patients (both in patients with and without mutations in the gene encoding TDP-43) and in about 40% of FTLD patients, in whom mutations in progranulin (PGRN), leading to haploinsufficiency, are commonly found. Since PGRN is known to be a neurotrophic factor and can rescue the mutant TDP-43 induced (but not the mutant SOD1 induced) axonopathy in zebrafish, we investigated the therapeutic potential of PGRN in rodent models for ALS. To this end, mutant SOD1 and TDP-43 mice were crossbred with human PGRN overexpressing mice and mutant SOD1 and TDP-43 rats were implanted with intracerebroventricular catheters connected to mini-osmotic pumps with hPGRN. However, since all existing TDP-43 mouse models have their limitations, we first aimed to characterize and optimize the most widely used TDP-43 mouse: the Prnp mutant human TDP-43 (A315T) mouse. The use of this mouse is currently hampered by sudden death, due to intestinal pseudo-obstruction. By feeding these mice a jellified fiber deprived food, the sudden death was abolished, disease duration significantly extended up to several months, and a progressive degeneration of upper and lower motor axons became apparent. In line with the results in zebrafish, we could not detect a beneficial effect of PGRN in mutant SOD1 mice and rats. But, PGRN increased survival of a sub group of TDP-43 mice, in particular the mice with a slow disease progression. In addition, preliminary results showed that PGRN overexpression reduced the Lcn2 expression, which is increased in TDP-43 mice. Lcn2 is a neurotoxic factor, released by astrocytes. These observations open new avenues for research into the role of PGRN in Lcn2 production and toxicity, and will hopefully lead to the identification of novel therapeutic targets for ALS (and FTLD) patients with TDP-43 pathology.status: publishe

    Progranulin does not affect motor neuron degeneration in mutant SOD1 mice and rats

    No full text
    Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is familial in 10% of patients, with mutations in SOD1 and C9orf72 being the most frequent cause. There is convincing evidence for overlap between ALS and frontotemporal lobar degeneration at the genetic, pathological, and clinical level. Null mutations in progranulin (PGRN) are a frequent cause of familial frontotemporal lobar degeneration. PGRN exerts neurotrophic properties on motor neurons in vitro and in vivo. We therefore examined whether PGRN could affect disease progression in mutant SOD1 mice and rats, both established models for ALS. Overexpression of PGRN in mice and intracerebroventricular delivery of PGRN in rats did not affect onset or progression of motor neuron degeneration.status: publishe

    The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding

    No full text
    Progranulin (PGRN) is a growth factor involved in wound healing, inflammation, tumor growth, and neurodegeneration. Mutations in the gene encoding PGRN give rise to shortage of PGRN and cause familial frontotemporal lobar degeneration. PGRN exerts neurotrophic functions and binding of PGRN to the membrane receptor sortilin (SORT1) mediates the endocytosis of PGRN. SORT1-mediated uptake plays an important role in the regulation of extracellular PGRN levels. We studied the role of SORT1 in PGRN-mediated neuroprotection in vitro and in vivo. The survival-enhancing effect of PGRN seemed to be dependent on the granulin E (GRN E) domain. Pharmacologic inhibition of the GRN E-SORT1 interaction or deletion of the SORT1 binding site of GRN E did not abolish its neurotrophic function. In addition, the in vivo phenotype of PGRN knockdown in zebrafish embryos was not phenocopied by SORT1 knockdown. These results suggest that GRN E mediates the neurotrophic properties of PGRN and that binding to SORT1 is not required for this effect.status: publishe

    Frequency of C9orf72 repeat expansions in amyotrophic lateral sclerosis: a Belgian cohort study

    No full text
    We determined the frequency of C9orf72 repeat expansions in a large cohort of Belgian patients with familial (fALS) and sporadic (sALS) amyotrophic lateral sclerosis (ALS). In total, 119 patients with fALS from 62 kindreds, 471 patients with sALS, and 384 control subjects were included. A C9orf72 repeat expansion was found in 32 of 62 fALS pedigrees (51.6%), in 45 of 471 patients with sALS (9.6%), but in none of the control subjects. Compared with fALS of unknown etiology or fALS caused by mutations in other ALS-causing genes, C9orf72 repeat expansion carriers had a later age at onset (57.3 vs. 51.4 years; p = 0.0061), a higher proportion of bulbar onset (31.9% vs. 12.5%, p < 0.0001), and a reduced survival (29.4 vs. 67.7 months, p = 0.0003). In the sALS cohort, there were no significant differences in these disease characteristics between the C9orf72 repeat expansion carriers and the noncarriers. C9orf72 repeat expansions are a frequent cause of ALS in Belgium, and also in sALS patients. These results might justify genetic testing of C9orf72 in all ALS patients.status: publishe

    Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice

    No full text
    BACKGROUND: TAR DNA binding protein 43 (TDP-43) is the main disease protein in most patients with amyotrophic lateral sclerosis (ALS) and about 50% of patients with frontotemporal dementia (FTD). TDP-43 pathology is not restricted to patients with missense mutations in TARDBP, the gene encoding TDP-43, but also occurs in ALS/FTD patients without known genetic cause or in patients with various other ALS/FTD gene mutations. Mutations in progranulin (GRN), which result in a reduction of ~ 50% of progranulin protein (PGRN) levels, cause FTD with TDP-43 pathology. How loss of PGRN leads to TDP-43 pathology and whether or not PGRN expression protects against TDP-43-induced neurodegeneration is not yet clear. METHODS: We studied the effect of PGRN on the neurodegenerative phenotype in TDP-43(A315T) mice. RESULTS: PGRN reduced the levels of insoluble TDP-43 and histology of the spinal cord revealed a protective effect of PGRN on the loss of large axon fibers in the lateral horn, the most severely affected fiber pool in this mouse model. Overexpression of PGRN significantly slowed down disease progression, extending the median survival by approximately 130 days. A transcriptome analysis did not point towards a single pathway affected by PGRN, but rather towards a pleiotropic effect on different pathways. CONCLUSION: Our findings reveal an important role of PGRN in attenuating mutant TDP-43-induced neurodegeneration.status: publishe

    Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice

    No full text
    Abstract Background TAR DNA binding protein 43 (TDP-43) is the main disease protein in most patients with amyotrophic lateral sclerosis (ALS) and about 50% of patients with frontotemporal dementia (FTD). TDP-43 pathology is not restricted to patients with missense mutations in TARDBP, the gene encoding TDP-43, but also occurs in ALS/FTD patients without known genetic cause or in patients with various other ALS/FTD gene mutations. Mutations in progranulin (GRN), which result in a reduction of ~ 50% of progranulin protein (PGRN) levels, cause FTD with TDP-43 pathology. How loss of PGRN leads to TDP-43 pathology and whether or not PGRN expression protects against TDP-43-induced neurodegeneration is not yet clear. Methods We studied the effect of PGRN on the neurodegenerative phenotype in TDP-43(A315T) mice. Results PGRN reduced the levels of insoluble TDP-43 and histology of the spinal cord revealed a protective effect of PGRN on the loss of large axon fibers in the lateral horn, the most severely affected fiber pool in this mouse model. Overexpression of PGRN significantly slowed down disease progression, extending the median survival by approximately 130 days. A transcriptome analysis did not point towards a single pathway affected by PGRN, but rather towards a pleiotropic effect on different pathways. Conclusion Our findings reveal an important role of PGRN in attenuating mutant TDP-43-induced neurodegeneration
    corecore