5 research outputs found

    System architecture of MMIC-based large aperture arrays for space application

    Get PDF
    The persistent trend to use millimeter-wave frequencies for satellite communications presents the challenge to design large-aperture phased arrays for space applications. These arrays, which comprise 100 to 10,000 elements, are now possible due to the advent of lightwave technology and the availability of monolithic microwave integrated circuits. In this paper, system aspects of optically controlled array design are studied. In particular, two architectures for a 40 GHz array are outlined, and the main system-related issues are examined: power budget, synchronization in frequency and phase, and stochastic effects

    W-4 PHASE AND FREQUENCY COHERENCY OF MULTIPLE OPTICALLY SYNCHRONIZED 20GHZ FET OSCILLATORS FOR SATELLITE COMMUNICATIONS

    Get PDF
    ABSTRACT Future generation of communication satellites are based on large aperture phased array antennas, which are composed of many active transmit/receive modules. The phase and frequency coherency of these modules are of concern. A viable technique to provide phase and frequency references for synchronization is through fiber-optic distribution and using indirect subharmonic optical injection locking techniques. Experimental results of phase and frequency coherency of two 20GHz FET oscillators are reported in this paper. Optimum performance was achieved at subharmonic factor of 1/4 with locking range of 84MHz ancl phase noise degradation of only 14 dB. Initial phase coherency measurements of two injection locked oscillators indicate that a phase error can be introduced due to the detuning between the slave and master oscillator signals. A scheme to correct for this phase error is also presented
    corecore