279 research outputs found

    X-Shooter observations of low-mass stars in the Eta Chamaeleontis association

    Full text link
    The nearby Eta Chamaeleontis association is a collection of 4-10 Myr old stars with a disk fraction of 35-45%. In this study, the broad wavelength coverage of VLT/X-Shooter is used to measure the stellar and mass accretion properties of 15 low mass stars in the Eta Chamaeleontis association. For each star, the observed spectrum is fitted with a non-accreting stellar template and an accretion spectrum obtained from assuming a plane-parallel hydrogen slab. Five of the eight stars with an IR disk excess show excess UV emission, indicating ongoing accretion. The accretion rates measured here are similar to those obtained from previous measurements of excess UV emission, but tend to be higher than past measurements from H-alpha modeling. The mass accretion rates are consistent with those of other young star forming regions.Comment: Accepted for publication in Astronomy & Astrophysic

    Empirical Isochrones for Low Mass Stars in Nearby Young Associations

    Get PDF
    Absolute ages of young stars are important for many issues in pre-main sequence stellar and circumstellar evolution but are long recognized as difficult to derive and calibrate. In this paper, we use literature spectral types and photometry to construct empirical isochrones in HR diagrams for low-mass stars and brown dwarfs in the eta Cha, epsilon Cha, and TW Hya Associations and the beta Pic and Tuc-Hor Moving Groups. A successful theory of pre-main sequence evolution should match the shapes of the stellar loci for these groups of young stars. However, when comparing the combined empirical isochrones to isochrones predicted from evolutionary models, discrepancies lead to a spectral type (mass) dependence in stellar age estimates. Improved prescriptions for convection and boundary conditions in the latest models of pre-main sequence models lead to a significantly improved correspondence between empirical and model isochrones, with small offsets at low temperatures that may be explained by observational uncertainties or by model limitations. Independent of model predictions, linear fits to combined stellar loci of these regions provide a simple empirical method to order clusters by luminosity with a reduced dependence on spectral type. Age estimates calculated from various sets of modern models that reproduce Li depletion boundary ages of the beta Pic Moving Group also imply a ~4 Myr age for the low mass members of the Upper Sco OB Association, which is younger than the 11 Myr age that has been recently estimated for intermediate mass members.Comment: Accepted by ApJ, 18 page

    An Optical Spectroscopic Study of T Tauri Stars. I. Photospheric Properties

    Get PDF
    Measurements of masses and ages of young stars from their location in the HR diagram are limited by not only the typical observational uncertainties that apply to field stars, but also by large systematic uncertainties related to circumstellar phenomena. In this paper, we analyze flux calibrated optical spectra to measure accurate spectral types and extinctions of 283 nearby T Tauri stars. The primary advances in this paper are (1) the incorporation of a simplistic accretion continuum in optical spectral type and extinction measurements calculated over the full optical wavelength range and (2) the uniform analysis of a large sample of stars. Comparisons between the non-accreting TTS photospheric templates and stellar photosphere models are used to derive conversions from spectral type to temperature. Differences between spectral types can be subtle and difficult to discern, especially when accounting for accretion and extinction. The spectral types measured here are mostly consistent with spectral types measured over the past decade. However, our new spectral types are 1-2 subclasses later than literature spectral types for the original members of the TWA and are discrepant with literature values for some well known Taurus CTTSs. Our extinction measurements are consistent with other optical extinction measurements but are typically 1 mag lower than nIR measurements, likely the result of methodological differences and the presence of nIR excesses in most CTTSs. As an illustration of the impact of accretion, SpT, and extinction uncertainties on the HR diagrams of young clusters, we find that the resulting luminosity spread of stars in the TWA is 15-30%. The luminosity spread in the TWA and previously measured for binary stars in Taurus suggests that for a majority of stars, protostellar accretion rates are not large enough to significantly alter the subsequent evolution.Comment: Accepted by ApJ. 30 pages plus 12 pages of Tables and Reference

    Age spreads and the temperature dependence of age estimates in Upper Sco

    Full text link
    Past estimates for the age of the Upper Sco Association are typically 11-13 Myr for intermediate-mass stars and 4-5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a similar timescale as the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.Comment: 13 pages, accepted by Ap

    How Hot is the Wind from TW Hydrae?

    Get PDF
    It has recently been suggested that the winds from Classical T Tauri stars in general, and the wind from TW Hya in particular, reaches temperatures of at least 300,000 K while maintaing a mass loss rate of 1011\sim 10^{-11} \Msol yr1^{-1} or larger. If confirmed, this would place strong new requirements on wind launching and heating models. We therefore re-examine spectra from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and spectra from the Far Ultraviolet Spectroscopic Explorer satellite in an effort to better constrain the maximum temperature in the wind of TW Hya. We find clear evidence for a wind in the \ion{C}{2} doublet at 1037 \AA and in the \ion{C}{2} multiplet at 1335 \AA. We find no wind absorption in the \ion{C}{4} 1550 \AA doublet observed at the same time as the \ion{C}{2} 1335 \AA line or in observations of \ion{O}{6} observed simultaneously with the \ion{C}{2} 1037 \AA line. The presence or absence of \ion{C}{3} wind absorption is ambiguous. The clear lack of a wind in the \ion{C}{4} line argues that the wind from TW Hya does not reach the 100,000 K characteristic formation temperature of this line. We therefore argue that the available evidence suggests that the wind from TW Hya, and probably all classical T Tauri stars, reaches a maximum temperature in the range of 10,000 -- 30,000 K.Comment: 17 pages, 3 figures, Figure 1 in 2nd version fixes a small velocity scaling error and new revision adds a reference to an additional paper recently foun

    Continuum Variability of Deeply Embedded Protostars as a Probe of Envelope Structure

    Full text link
    Stars may be assembled in large growth spurts, however the evidence for this hypothesis is circumstantial. Directly studying the accretion at the earliest phases of stellar growth is challenging because young stars are deeply embedded in optically thick envelopes, which have spectral energy distributions that peak in the far-IR, where observations are difficult. In this paper, we consider the feasibility of detecting accretion outbursts from these younger stars by investigating the timescales for how the protostellar envelope responds to changes in the emission properties of the central source. The envelope heats up in response to an outburst, brightening at all wavelengths and with the emission peak moving to shorter wavelengths. The timescale for this change depends on the time for dust grains to heat and re-emit photons and the time required for the energy to escape the inner, optically-thick portion of the envelope. We find that the dust response time is much shorter than the photon propagation time and thus the timescale over which the emission varies is set by time delays imposed by geometry. These times are hours to days near the peak of the spectral energy distribution and weeks to months in the sub-mm. The ideal location to quickly detect continuum variability is therefore in the mid- to far-IR, near the peak of the spectral energy distribution, where the change in emission amplitude is largest. Searching for variability in sub-mm continuum emission is also feasible, though with a longer time separation and a weaker relationship between the amount of detected emission amplitude and change in central source luminosity. Such observations would constrain accretion histories of protostars and would help to trace the disk/envelope instabilities that lead to stellar growth.Comment: 25 pages, 6 figures, accepted for publication in the Astrophysical Journa

    An Enhanced Spectroscopic Census of the Orion Nebula Cluster

    Get PDF
    We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution R~ 1500-2000 red optical spectra acquired using the Palomar 200" and Kitt Peak 3.5m telescopes. Spectral types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, constituting the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of adequate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately 2 spectral sub-classes. We also compare our grating spectroscopy results with classification based on narrow-band TiO filter photometry from Da Rio et al. (2012, finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.Comment: Accepted to the Astronomical Journal; 37 pages, including 11 Figures and 3 Tables (one long table not reproduced here but available upon request or from the journal

    CO/H2 Abundance Ratio ~ 10^{-4} in a Protoplanetary Disk

    Full text link
    The relative abundances of atomic and molecular species in planet-forming disks around young stars provide important constraints on photochemical disk models and provide a baseline for calculating disk masses from measurements of trace species. A knowledge of absolute abundances, those relative to molecular hydrogen (H2), are challenging because of the weak rovibrational transition ladder of H2_{2} and the inability to spatially resolve different emission components within the circumstellar environment. To address both of these issues, we present new contemporaneous measurements of CO and H2 absorption through the "warm molecular layer" of the protoplanetary disk around the Classical T Tauri Star RW Aurigae A. We use a newly commissioned observing mode of the Hubble Space Telescope-Cosmic Origins Spectrograph to detect warm H2 absorption in this region for the first time. An analysis of the emission and absorption spectrum of RW Aur shows components from the accretion region near the stellar photosphere, the molecular disk, and several outflow components. The warm H2 and CO absorption lines are consistent with a disk origin. We model the 1092-1117A spectrum of RW Aur to derive log10 N(H2)~=~19.900.22+0.33^{+0.33}_{-0.22} at Trot_{rot}(H2) ~=~440~+/-~39 K. The CO AA~--~XX bands observed from 1410-1520A are best fit by log10 N(CO)~=~16.1~0.5+0.3^{+0.3}_{-0.5} at Trot_{rot}(CO) ~=~200125+650^{+650}_{-125} K. Combining direct measurements of the HI, H2, and CO column densities, we find a molecular fraction in the warm disk surface of fH2f_{H2}~>=~0.47 and derive a molecular abundance ratio of CO/H2~=~1.61.3+4.7^{+4.7}_{-1.3}~x~104^{-4}, both consistent with canonical interstellar dense cloud values.Comment: ApJ - accepted. 13 pages, 8 figure

    The [Ne III] Jet of DG Tau and its Ionization Scenarios

    Full text link
    Forbidden neon emission from jets of low-mass young stars can be used to probe the underlying high-energy processes in these systems. We analyze spectra of the jet of DG Tau obtained with the Very Large Telescope/X-Shooter spectrograph in 2010. [Ne III] λ\lambda3869 is clearly detected in the innermost 3" microjet and the outer knot located at \sim6".5. The velocity structure of the inner microjet can be decomposed into the low-velocity component (LVC) at 70\sim -70 km/s and the high-velocity component (HVC) at 180\sim -180 km/s. Based on the observed [Ne III] flux and its spatial extent, we suggest the origins of the [Ne III] emission regions and their relation with known X-ray sources along the jet. The flares from the hard X-ray source close to the star may be the main ionization source of the innermost microjet. The fainter soft X-ray source at 0".2 from the star may provide sufficient heating to help to sustain the ionization fraction against the recombination in the flow. The outer knot may be reionized by shocks faster than 100 km/s such that [Ne III] emission reappears and that the soft X-ray emission at 5".5 is produced. Velocity decomposition of the archival Hubble Space Telescope spectra obtained in 1999 shows that the HVC had been faster, with a velocity centroid of 260\sim -260 km/s. Such a decrease in velocity may potentially be explained by the expansion of the stellar magnetosphere, changing the truncation radius and thus the launching speed of the jet. The energy released by magnetic reconnections during relaxation of the transition can heat the gas up to several tens of megakelvin and provide the explanation for on-source keV X-ray flares that ionize the neon microjet
    corecore