98 research outputs found

    Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses

    Get PDF
    The inferior longitudinal fasciculus (ILF) is a long-range, associative white matter pathway that connects the occipital and temporal-occipital areas of the brain to the anterior temporal areas. In view of the ILF’s anatomic connections, it has been suggested that this pathway has a major role in a relatively large array of brain functions. Until recently, however, the literature data on these potential functions were scarce. Here, we review the key findings of recent anatomic, neuromodulation, and neuropsychological studies. We also summarize reports on how this tract is disrupted in a wide range of brain disorders, including psychopathologic, neurodevelopmental, and neurologic diseases. Our review reveals that the ILF is a multilayered, bidirectional tract involved in processing and modulating visual cues and thus in visually guided decisions and behaviors. Accordingly, sudden disruption of the ILF by neurologic insult is mainly associated with neuropsychological impairments of visual cognition (e.g., visual agnosia, prosopagnosia, and alexia). Furthermore, disruption of the ILF may constitute the pathophysiologic basis for visual hallucinations and socio-emotional impairments in schizophrenia, as well as emotional difficulties in autism spectrum disorder. Degeneration of the ILF in neurodegenerative diseases affecting the temporal lobe may explain (at least in part) the gradual onset of semantic and lexical access difficulties. Although some of the functions mediated by the ILF appear to be relatively lateralized, observations from neurosurgery suggest that disruption of the tract’s anterior portion can be dynamically compensated for by the contralateral portion. This might explain why bilateral disruption of the ILF in either acute or progressive disease is highly detrimental in neuropsychological terms

    Towards a dynamic and hodotopical dual-stream model of the anatomo-functional organization of mentalizing processes : evidence provided by multimodal brain mapping in patients harboring a diffuse low-grade glioma

    No full text
    Comprendre comment le cerveau humain engendre les formes les plus élaborées de comportements est profondément lié à nos connaissances générales sur son organisation anatomique et fonctionnelle. Jusqu'à récemment encore, on pensait que les fonctions cognitives n'étaient rien d'autre que le sous-produit de l'activité neurale de régions corticales discrètes et hyper-fonctionnalisées. Les découvertes majeures obtenues ces dix dernières années dans le champ de la neuro-imagerie, et plus particulièrement de la connectomique, invitent cependant à complexifier nos représentations sur les liens qu'entretiennent structures et fonctions cérébrales. Le cerveau semble en effet être organisé en systèmes neurocognitifs complexes, hautement distribués et plastiques. C'est dans cet esprit qu'a été réalisé ce travail de thèse dont l'ambition première a été de repenser les modèles actuels de la cognition sociale, et en particulier ceux ayant trait à la fonction de mentalisation, à travers l'étude comportementale des patients porteurs d'un gliome diffus de bas-grade. Cette tumeur neurologique rare constitue un excellent modèle physiopathologique en vue du démasquage des structures maîtresses des systèmes cognitifs complexes, en ce qu'elle induit des phénomènes majeurs de réorganisation fonctionnelle, et s'infiltre préférentiellement le long de la connectivité axonale associative. Des corrélations anatomo-cliniques ont été réalisées suivant une approche topologique classique (analyse de groupe en régions d'intérêt, cartographie voxel-based lesion-symptom, stimulation électrique corticale intra-opératoire) mais également hodologique (degré de déconnection des faisceaux d'association, stimulation électrique de la connectivité axonale). Les résultats principaux de nos différents travaux nous permettent de jeter les premières bases d'un modèle à double voie dynamique (plastique) et hodotopique (contraint par la réalité anatomique) de l'organisation anatomo-fonctionnelle des processus de mentalisation. Spécifiquement, une voie dorsale, interconnectant le aires corticales fronto-pariétales « miroirs » via le système périsylvien de substance blanche associative (faisceau arqué et faisceau longitudinal supérieur latéral), sous-tendrait les processus perceptifs de « bas-niveau » nécessaires à l'identification préréflexive des états mentaux ; une voie cingulo-médiane, interconnectant les régions préfrontales médiales et rostro-cingulaires aux régions pariétales postérieures médiales via le faisceau cingulaire, sous-tendrait les processus de «haut-niveau » nécessaires aux inférences mentalistiques conscientes. Ces découvertes constituent une avancée substantielle en neurosciences sociales, ont des implications importantes pour la prise en charge clinique des patients, et peuvent permettre de mieux comprendre certaines psychopathologies caractérisées à la fois par un trouble de la mentalisation et des anomalies structurales de la connectivité associative (troubles du spectre autistique).Understanding how the brain produces sophisticated behaviours strongly depends of our knowledge on its anatomical and functional organization. Until recently, it was believed that high-level cognition was merely the by-product of the neural activity of discrete and highly specialized cortical areas. Major findings obtained in the past decade from neuroimaging, particularly from the field of connectomics, prompt now researchers to revise drastically their conceptions about the links between brain structures and functions. The brain seems indeed organized in complex, highly distributed and plastic neurocognitive networks. This is in this state of mind that our work has been carried out. Its foremost ambition was to rethink actuals models of social cognition, especially mentalizing, through the behavioural study of patients harbouring a diffuse low-grade glioma. Because this rare neurological tumour induces major functional reorganization phenomena and migrates preferentially along axonal associative connectivity, it constitutes an excellent pathophysiological model for unmasking the core structures subserving complex cognitive systems. Anatomo-clinical correlations were conducted according to both a classical topological approach (region of interest analyses, voxel-based lesion-symptom mapping, intraoperative cortical electrostimulation) and a hodological approach (degree of disconnection of associative white matter fasciculi, intraoperative axonal connectivity mapping). The main results of our different studies enable us to lay the foundation of a dynamic (plastic) and hodotopical (connectivity) dual-stream model of mentalizing. Specifically, a dorsal stream, interconnecting mirror frontoparietal areas via the perisylvian network (arcuate fasciculus and lateral superior longitudinal fasciculus), may subserve low-level perceptual processes required in rapid and pre-reflective identification of mental states; a cingulo-medial stream, interconnecting medial prefrontal and rostro-cingulated areas with medial posterior parietal areas via the cingulum, may subserve higher-level processes required in reflective mentalistic inferences. These original findings represents a great step in social neuroscience, have major implications in clinical practice, and opens new opportunities in understanding certain pathological conditions characterized by both mentalizing deficits and aberrant structural connectivity (e.g. autism spectrum disorders)

    Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions

    No full text
    International audienceFor more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery

    Contribution of the medial eye field network to the voluntary deployment of visuospatial attention

    No full text
    International audienceHistorically, the study of patients with spatial neglect has provided fundamental insights into the neural basis of spatial attention. However, lesion mapping studies have been unsuccessful in establishing the potential role of associative networks spreading on the dorsal-medial axis, mainly because they are uncommonly targeted by vascular injuries. Here we combine machine learning-based lesion-symptom mapping, disconnection analyses and the longitudinal behavioral data of 128 patients with well-delineated surgical resections. The analyses show that surgical resections in a location compatible with both the supplementary and the cingulate eye fields, and disrupting the dorsal-medial fiber network, are specifically associated with severely diminished performance on a visual search task (i.e., visuo-motor exploratory neglect) with intact performance on a task probing the perceptual component of neglect. This general finding provides causal evidence for a role of the frontal-medial network in the voluntary deployment of visuo-spatial attention

    The dorsal cingulate cortex as a critical gateway in the network supporting conscious awareness

    No full text
    International audienc

    Challenging the Myth of Right Nondominant Hemisphere: Lessons from Corticosubcortical Stimulation Mapping in Awake Surgery and Surgical Implications

    No full text
    International audienceFor many years, the right hemisphere (RH) was considered as nondominant, especially in right-handers. In neurosurgical practice, this dogma resulted in the selection of awake procedure with language mapping only for lesions of the left dominant hemisphere. Conversely, surgery under general anesthesia (possibly with motor mapping) was usually proposed for right lesions. However, when objective neuropsychological assessments were performed, they frequently showed cognitive and behavioral deficits after brain surgery, even in the RH. Therefore, to preserve an optimal quality of life, especially in patients with a long survival expectancy (as in low-grade gliomas), awake surgery with cortical and axonal electrostimulation mapping has recently been proposed for resection of right tumors. Here, we review new insights gained from intraoperative stimulation into the pivotal role of the RH in movement execution and control, visual processes and spatial cognition, language and nonverbal semantic processing, executive functions (e.g., attention), and social cognition (mentalizing and emotion recognition). These original findings, which break with the myth of a nondominant RH, may have important implications in cognitive neurosciences, by improving our knowledge of the functional connectivity of the RH, as well as for the clinical management of patients with a right lesion. In brain surgery, awake mapping should be considered more systematically in the RH. Moreover, neuropsychological examination must be achieved in a more systematic manner before and after surgery within the RH, to optimize care by predicting the likelihood of functional recovery and by elaborating specific programs of rehabilitation

    Functional anatomy of the frontal aslant tract and surgical perspectives.

    No full text
    International audienceThe frontal aslant tract (FAT) is an intralobar white matter fasciculus providing dense connections between the medial part of the superior frontal gyrus, in particular the pre-supplementary motor area (SMA) and the SMA proper, and the lateral part of the frontal lobe, especially the inferior frontal gyrus. Although this tract has been characterized belatedly, it has received important attention in recent years due notably to its increasingly evidenced role in the speech and language networks. As cerebral tumors frequently affect the frontal lobe, an improved knowledge of the functional anatomy of the FAT is mandatory to refine the way neurosurgeries are performed and to give the patients the best opportunities to recover after surgery. In this work, we first describe the spatial arrangement of the FAT and detail its cortical projections. We then provide a comprehensive review of the functions supposedly mediated by this transverse frontal connectivity. It is structured following a tripartite organization where the linguistic (i.e. speech and language), supralinguistic (i.e. functions that interact with speech and language: executive functions, working memory, and social communication) and extralinguistic implications (i.e. functions outside the linguistic domain: visuospatial processing, praxis and motor skills) are successively addressed. We lastly discussed this knowledge in the context of wide-awake neurosurgeries for brain tumors. We emphasize the need to evaluate thoroughly the functions conveyed by FAT by means of longitudinally-designed studies to first estimate its plasticity potential and then to determine which tasks should be selected to avoid lasting impairments due to its disconnective breakdown
    • …
    corecore