76 research outputs found

    Inherited multifocal RPE-diseases: mechanisms for local dysfunction in global retinoid cycle gene defects

    Get PDF
    AbstractAlterations of retinoid cycle genes are known to cause retinal diseases characterized by focal white dot fundus lesions. Fundus appearances reveal circumscribed RPE-changes, although generalized metabolic defects and global functional abnormalities are present. As a possible explanation, topographic inhomogeneities of the human photoreceptor mosaic and the role of a cone specific visual cycle will be discussed. Due to particular characteristics of photoreceptor subtypes as well as different pathways for photopigment regeneration the metabolic demand of individual RPE cells might differ. In “flecked retina diseases” heterogeneity of metabolic demand in individual RPE cells could therefore be responsible for their multifocal appearance

    Progressive retinal degeneration and glial activation in the Cln6nclf mouse model of neuronal ceroid lipofuscinosis : a beneficial effect of DHA and Curcumin supplementation

    Get PDF
    Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA), could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds

    Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration

    Get PDF
    PURPOSE. Macular degeneration (MD) affects the central retina and leads to gradual loss of foveal vision. Although, photoreceptors are primarily affected in MD, the retinal nerve fiber layer (RNFL) and central visual pathways may also be altered subsequent to photoreceptor degeneration. Here we investigate whether retinal damage caused by MD alters microstructural properties of visual pathways using diffusion-weighted magnetic resonance imaging. METHODS. Six MD patients and six healthy control subjects participated in the study. Retinal images were obtained by spectral-domain optical coherence tomography (SD-OCT). Diffusion tensor images (DTI) and high-resolution T1-weighted structural images were collected for each subject. We used diffusion-based tensor modeling and probabilistic fiber tractography to identify the optic tract (OT) and optic radiations (OR), as well as nonvisual pathways (corticospinal tract and anterior fibers of corpus callosum). Fractional anisotropy (FA) and axial and radial diffusivity values (AD, RD) were calculated along the nonvisual and visual pathways. RESULTS. Measurement of RNFL thickness reveals that the temporal circumpapillary retinal nerve fiber layer was significantly thinner in eyes with macular degeneration than normal. While we did not find significant differences in diffusion properties in nonvisual pathways, patients showed significant changes in diffusion scalars (FA, RD, and AD) both in OT and OR. CONCLUSIONS. The results indicate that the RNFL and the white matter of the visual pathways are significantly altered in MD patients. Damage to the photoreceptors in MD leads to atrophy of the ganglion cell axons and to corresponding changes in microstructural properties of central visual pathways

    Systemic therapy of necrobiotic xanthogranuloma: a systematic review

    Get PDF
    Background Even though a plethora of systemic therapies have been proposed for necrobiotic xanthogranuloma (NXG), there is no systematic review on this topic in literature. Objective To review all existing literature on the systemic therapy of NXG in order to identify the most effective therapies. Methods All reported papers in the literature were screened for systemic treatments of NXG. Papers without proper description of the therapies, papers describing topical therapy, and articles without assessment of effectiveness were excluded. Subsequently, we analyzed 79 papers and a total of 175 cases. Results The most effective treatments for NXG are intravenous immunoglobulins (IVIG), corticosteroids, and combination therapies including corticosteroids. Conclusions Corticosteroids and IVIG should therefore be considered first-line treatments in patients with NXG

    Cortical Thickness Related to Compensatory Viewing Strategies in Patients With Macular Degeneration

    Get PDF
    Retinal diseases like age-related macular degeneration (AMD) or hereditary juvenile macular dystrophies (JMD) lead to a loss of central vision. Many patients compensate for this loss with a pseudo fovea in the intact peripheral retina, the so-called “preferred retinal locus” (PRL). How extensive eccentric viewing associated with central vision loss (CVL) affects brain structures responsible for visual perception and visually guided eye movements remains unknown. CVL results in a reduction of cortical gray matter in the “lesion projection zone” (LPZ) in early visual cortex, but the thickness of primary visual cortex appears to be largely preserved for eccentric-field representations. Here we explore how eccentric viewing strategies are related to cortical thickness (CT) measures in early visual cortex and in brain areas involved in the control of eye movements (frontal eye fields, FEF, supplementary eye fields, SEF, and premotor eye fields, PEF). We determined the projection zones (regions of interest, ROIs) of the PRL and of an equally peripheral area in the opposite hemifield (OppPRL) in early visual cortex (V1 and V2) in 32 patients with MD and 32 age-matched controls (19–84 years) by functional magnetic resonance imaging. Subsequently, we calculated the CT in these ROIs and compared it between PRL and OppPRL as well as between groups. Additionally, we examined the CT of FEF, SEF, and PEF and correlated it with behavioral measures like reading speed and eccentric fixation stability at the PRL. We found a significant difference between PRL and OppPRL projection zones in V1 with increased CT at the PRL, that was more pronounced in the patients, but also visible in the controls. Although the mean CT of the eye fields did not differ significantly between patients and controls, we found a trend to a positive correlation between CT in the right FEF and SEF and fixation stability in the whole patient group and between CT in the right PEF and reading speed in the JMD subgroup. The results indicate a possible association between the compensatory strategies used by patients with CVL and structural brain properties in early visual cortex and cortical eye fields

    BAP1 germline mutation in two first grade family members with uveal melanoma

    Get PDF
    Background: Uveal melanoma (UM) is the most common primary cancer of the eye in adults. About half of the patients are at risk of developing metastatic disease resulting in a poor clinical prognosis. Metastatic progression is strongly associated with loss of one chromosome 3 in the tumour (monosomy 3). The tumour suppressor gene BAP1 was found to be recurrently mutated in UM with monosomy 3. Familial UM is rare and amounts to about 0.6–6% of all patients with melanoma. However, BAP1 germline mutations have been identified in rare hereditary tumour syndromes, including cases with UM. One may assume that UM may be part of these hereditary conditions with predisposition to malignant cancers. Methods: The patients underwent complete ophthalmological workup and enucleation due to UM. Microsatellite analysis was performed to determine the chromosome 3 status of the tumours. Sanger sequencing of all coding exons of the BAP1 gene was performed in blood DNA of the patients. Results: Here we report on two family members (mother and son) diagnosed with UM. In both patients, a cosegregating BAP1 germline mutation (c.299 T>C) was found. The mutant BAP1 allele was retained in the tumour of the son showing monosomy 3. The son further developed urothelial carcinoma and liver metastasis, the mother was affected by the UM and cholangiocellular carcinoma. Conculsions: We detected a cosegregating BAP1 germline mutation in two family members with UM. This suggests that, consistent with a classic tumour suppressor model, carriers of damaging mutations in BAP1 are predisposed to UM. However, as BAP1 germline mutations have been found to cause other cancer syndromes as well, there must be other factors that decide about the type of tumour emerging from BAP1 inactivation

    Mycophenolic acid in the treatment of birdshot chorioretinopathy: long-term follow-up

    Get PDF
    Aim: To assess the long-term efficacy and tolerability of both derivatives of mycophenolic acid, mycophenolate mofetil (MMF) and mycophenolate sodium (MPS), in the therapy of patients with birdshot chorioretinopathy (BSCR). Methods: Retrospective analysis of 24 patients (48 eyes) with BSCR, treated with MMF or MPS with a follow-up of at least 1 year. The main outcome measures included control of inflammation, steroid-sparing potential and side effects. Secondary outcome measure was the development of retinal function during the therapy measured by best-corrected visual acuity (BCVA), visual field and/or electroretinography (ERG). Results: Twelve patients (50%) were treated with MMF and 12 patients (50%) with MPS. Control of intraocular inflammation, defined as complete lack of clinical and angiographic signs of inflammatory activity, was achieved in 16 of 24 patients (67%). The angiographic signs of activity were significantly reduced during the follow-up (p0.05). In 20 out of 21 patients (95%) who received systemic corticosteroids, the corticosteroids could be tapered to a daily dose of ≤10 mg (rate 0.26/patient-year). Drug-related side effects occurred in 12 patients (50%, rate 0.16/patient-year). In four patients (17%), a therapy switch from MMF to MPS was undertaken due to gastrointestinal discomfort. Conclusions: Derivatives of mycophenolic acid are effective and safe drugs for the treatment of BSCR. In cases with gastrointestinal side effects, a therapy switch from MMF to MPS should be considered
    corecore