6,758 research outputs found

    Numerical Tests of Rotational Mixing in Massive Stars with the new Population Synthesis Code BONNFIRES

    Full text link
    We use our new population synthesis code BONNFIRES to test how surface abundances predicted by rotating stellar models depend on the numerical treatment of rotational mixing, such as spatial resolution, temporal resolution and computation of mean molecular weight gradients. We find that even with identical numerical prescriptions for calculating the rotational mixing coefficients in the diffusion equation, different timesteps lead to a deviation of the coefficients and hence surface abundances. We find the surface abundances vary by 10-100% between the model sequences with short timestep of 0.001Myr to model sequences with longer timesteps. Model sequences with stronger surface nitrogen enrichment also have longer main-sequence lifetimes because more hydrogen is mixed to the burning cores. The deviations in main-sequence lifetimes can be as large as 20%. Mathematically speaking, no numerical scheme can give a perfect solution unless infinitesimally small timesteps are used. However, we find that the surface abundances eventually converge within 10% between modelling sequences with sufficiently small timesteps below 0.1Myr. The efficiency of rotational mixing depends on the implemented numerical scheme and critically on the computation of the mean molecular weight gradient. A smoothing function for the mean molecular weight gradient results in stronger rotational mixing. If the discretization scheme or the computational recipe for calculating the mean molecular weight gradient is altered, re-calibration of mixing parameters may be required to fit observations. If we are to properly understand the fundamental physics of rotation in stars, it is crucial that we minimize the uncertainty introduced into stellar evolution models when numerically approximating rotational mixing processes.Comment: 8 pages, 6 figures, accepted by A&

    Gallium Arsenide preparation and QE Lifetime Studies using the ALICE Photocathode Preparation Facility

    Full text link
    In recent years, Gallium Arsenide (GaAs) type photocathodes have become widely used as electron sources in modern Energy Recovery Linac based light sources such as the Accelerators and Lasers in Combined Experiments (ALICE) at Daresbury Laboratory and as polarised electron source for the proposed International Linear Collider (ILC). Once activated to a Low Electron Affinity (LEA) state and illuminated by a laser, these materials can be used as a high-brightness source of both polarised and un-polarised electrons. This paper presents an effective multi-stage preparation procedure including heat cleaning, atomic hydrogen cleaning and the activation process for a GaAs photocathode. The stability of quantum efficiency (QE) and lifetime of activated to LEA state GaAs photocathode have been studied in the ALICE load-lock photocathode preparation facility which has a base pressure in the order of 10^-11 mbar. These studies are supported by further experimental evidence from surface science techniques such as X-ray Photoelectron Spectroscopy (XPS) to demonstrate the processes at the atomic level.Comment: Presented at First International Particle Accelerator Conference, IPAC'10, Kyoto, Japan, from 23 to 28 May 201

    BONNSAI: a Bayesian tool for comparing stars with stellar evolution models

    Get PDF
    Powerful telescopes equipped with multi-fibre or integral field spectrographs combined with detailed models of stellar atmospheres and automated fitting techniques allow for the analysis of large number of stars. These datasets contain a wealth of information that require new analysis techniques to bridge the gap between observations and stellar evolution models. To that end, we develop BONNSAI (BONN Stellar Astrophysics Interface), a Bayesian statistical method, that is capable of comparing all available observables simultaneously to stellar models while taking observed uncertainties and prior knowledge such as initial mass functions and distributions of stellar rotational velocities into account. BONNSAI can be used to (1) determine probability distributions of fundamental stellar parameters such as initial masses and stellar ages from complex datasets, (2) predict stellar parameters that were not yet observationally determined and (3) test stellar models to further advance our understanding of stellar evolution. An important aspect of BONNSAI is that it singles out stars that cannot be reproduced by stellar models through χ2\chi^{2} hypothesis tests and posterior predictive checks. BONNSAI can be used with any set of stellar models and currently supports massive main-sequence single star models of Milky Way and Large and Small Magellanic Cloud composition. We apply our new method to mock stars to demonstrate its functionality and capabilities. In a first application, we use BONNSAI to test the stellar models of Brott et al. (2011a) by comparing the stellar ages inferred for the primary and secondary stars of eclipsing Milky Way binaries. Ages are determined from dynamical masses and radii that are known to better than 3%. We find that the stellar models reproduce the Milky Way binaries well. BONNSAI is available through a web-interface at http://www.astro.uni-bonn.de/stars/bonnsai.Comment: Accepted for publication in A&A; 15 pages, 10 figures, 4 tables; BONNSAI is available through a web-interface at http://www.astro.uni-bonn.de/stars/bonnsa

    Substance use disorders in adolescents with attention deficit hyperactivity disorder: a 4-year follow-up study

    Get PDF
    Aim To examine the relationship between a childhood diagnosis of attention deficit hyperactivity disorder (ADHD) with or without oppositional defiant disorder (ODD)/conduct disorder (CD) and the development of later alcohol/drug use disorder [psychoactive substance use disorder (PSUD)] and nicotine dependence in a large European sample of ADHD probands, their siblings and healthy control subjects. Participants design and settingSubjects (n=1017) were participants in the Belgian, Dutch and German part of the International Multicenter ADHD Genetics (IMAGE) study. IMAGE families were identified through ADHD probands aged 5-17 years attending out-patient clinics, and control subjects from the same geographic areas. After a follow-up period (mean: 4.4 years) this subsample was re-assessed at a mean age of 16.4 years. Measurements PSUD and nicotine dependence were assessed using the Diagnostic Interview Schedule for Children, Alcohol Use Disorders Identification Test, Drug Abuse Screening Test and Fagerstrom test for Nicotine Dependence. Findings The ADHD sample was at higher risk of developing PSUD [hazard ratio (HR)=1.77, 95% confidence interval (CI)=1.05-3.00] and nicotine dependence (HR=8.61, 95% CI=2.44-30.34) than healthy controls. The rates of these disorders were highest for ADHD youth who also had CD, but could not be accounted for by this comorbidity. We did not find an increased risk of developing PSUD (HR=1.18, 95% CI=0.62-2.27) or nicotine dependence (HR=1.89, 95% CI=0.46-7.77) among unaffected siblings of ADHD youth. Conclusions A childhood diagnosis of attention deficit hyperactivity disorder is a risk factor for psychoactive substance use disorder and nicotine dependence in adolescence and comorbid conduct disorder, but not oppositional defiant disorder, further increases the risk of developing psychoactive substance use disorder and nicotine dependence

    Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity

    Get PDF
    The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the “side” position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on the N-heterocyclic carbene ligand lead to highly selective formation of the Z product

    Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    Full text link
    We report four probe measurements of the low field magnetoresistance in single core/shell GaAs/MnAs nanowires synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.Comment: Submitted to Applied Physics Letters; some typos corrected and a defective figure replace

    The interactive effect of water-borne cadmium and environmental hypoxia on common carp (Cyprinus carpio) metabolism

    Get PDF
    Regarding to the tight association between aquatic hypoxia and heavy metal contaminations in one hand and the role of both parameters on fish respiration, metabolism of carp could be assessed under single and mutual exposures to hypoxia and cadmium. Following measuring LC50-96h of cadmium (43.679 mg/l) for this species, 80 common carp were exposed to 10 different treatments, including control, acute (43.68 mg/l), sub-lethal (21.84 mg/l) and chronic (4.37 mg/l) cadmium as well as hypoxia for immediately (20% of saturation), 24h (40%) and 7 days (60%), and joint exposure of each similar treatment. By using of respirometer technique, we measured oxygen consumption rate in different time spans to calculate each individual standard metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS), factorial aerobic scope (FAS) and critical oxygen tension (PCrit). Obtained data show that acute and sub-lethal cadmium treatments led to significant (P<0.05) increases in all metabolic indices in comparison with control group whilst the MMR and AS have been reduced (P<0.05) following hypoxia treatments. Combined treatments of hypoxia and cadmium led to reduce SMR and PCrit in all treatments and MMR, AS and FAS only in acute and sub-lethal treatments. In overall, hypoxia can act as a limiting stressor in carp while cadmium can account as a loading stressor
    corecore