14,277 research outputs found

    Effects of Aprons on Pitfall Trap Catches of Carabid Beetles in Forests and Fields

    Get PDF
    This study compared the efficacy of three types of pitfall traps in four forest and two field habitats. Two traps had aprons and one did not. The two apron traps were the same except for a gap between the trap and the plywood-apron, allowing captures from above or below. Traps were placed in a split-plot design and had three replicates of the three trap types per habitat. The traps were emptied each week from May to September. ANOVA\u27s were performed on 12 trapped species separately over habitats, weeks, and the in- teractions between them. The nonapron trap captured over 40% more individuals than either apron trap, though apron traps tended to be more effective in fields for species found in both habitats. Habitat-trap interactions were only significant in two species. Trap-week interactions were significant in four species

    Neighborhood complexes and generating functions for affine semigroups

    Full text link
    Given a_1,a_2,...,a_n in Z^d, we examine the set, G, of all non-negative integer combinations of these a_i. In particular, we examine the generating function f(z)=\sum_{b\in G} z^b. We prove that one can write this generating function as a rational function using the neighborhood complex (sometimes called the complex of maximal lattice-free bodies or the Scarf complex) on a particular lattice in Z^n. In the generic case, this follows from algebraic results of D. Bayer and B. Sturmfels. Here we prove it geometrically in all cases, and we examine a generalization involving the neighborhood complex on an arbitrary lattice

    Neighborhood Complexes and Generating Functions for Affine Semigroups

    Get PDF
    Given a_{1}; a_{2},...a_{n} in Z^{d}, we examine the set, G, of all nonnegative integer combinations of these ai. In particular, we examine the generating function f(z) = Sum_{b in G}z^{b}. We prove that one can write this generating function as a rational function using the neighborhood complex (sometimes called the complex of maximal lattice-free bodies or the Scarf complex) on a particular lattice in Z^{n}. In the generic case, this follows from algebraic results of D. Bayer and B. Sturmfels. Here we prove it geometrically in all cases, and we examine a generalization involving the neighborhood complex on an arbitrary lattice.Integer programming, Complex of maximal lattice free bodies, Generating functions

    Are Noachian-age ridged plains (Nplr) actually early Hesperian in age

    Get PDF
    Whether or not the Nplr units in Memnonia and Argyre truly represent ridged plains volcanism of Noachian age or are simply areas of younger (Early Hesperian age) volcanism which failed to bury older craters and therefore have a greater total crater age than really applies to the ridged plains portion of those terrains is examined. The Nuekum and Hiller technique is used to determine the number of preserved crater retention surfaces in the Memnonia and Argyre regions where Scott and Tanaka show Nplr units to be common. The results for cratered terrain (Npl) in Memnonia is summarized along with those for ridged plains (Nplr) in both Memnonia and Argyre, and they are compared with similar results obtained for Tempe Terra and Lunae Plunum

    Fermion Mass Hierarchy from the Soft Wall

    Full text link
    We develop a 5d model for ElectroWeak physics based on a non compact warped extra dimension of finite length, known as the soft wall scenario, where all the dynamical degrees of freedom propagate in the 5d bulk. We solve the equations of motion and find the allowed spectra, showing that the mass of the lightest fermionic mode behaves as a power law of the effective 4d Yukawa coupling constant, with the exponent being the corresponding fermionic 5d bulk mass. Precisely this non universal behavior allows us to reproduce the hierarchy between the Standard Model (SM) fermion masses (from neutrinos to the top quark) with non-hierarchical fermionic bulk masses.Comment: 26 pages, 4 figures, minor changes, one figured added, version to be publish in PR

    Continuous plankton records : zooplankton and net phytoplankton in the southern regions of the Middle Atlantic Bight

    Get PDF
    The objectives of this survey include: 1) determine composition, abundance, and distribution of phytoplankton and zooplankton communities within two distinct water masses, shelf water and slope water; 2) identify seasonal and annual cycles in plankton dynamics, long term trends; and, 3) document spatial and temporal variations in the observed plankton dynamics in terms of timing and duration. Th~s report represents the conclusion of two year\u27s analysis of the Chesapeake Route and is divided into three sections

    Woodland Pottery Sourcing in the Carolina Sandhills

    Get PDF
    Research Report No. 29, Research Laboratories of Archaeology, University of North Carolina at Chapel Hill. Reports in this series discuss the findings of archaeological excavations and research projects undertaken by the RLA between 1984 and present

    Neighborhood Complexes and Generating Functions

    Get PDF
    Given a 1 , a 2 ,…, a n in Z d , we examine the set, G , of all nonnegative integer combinations of these a i . In particular, we examine the generating function f ( z ) = Sum {b in G} z b . We prove that one can write this generating function as a rational function using the neighborhood complex (sometimes called the complex of maximal lattice-free bodies or the Scarf complex) on a particular lattice in Z n . In the generic case, this follows from algebraic results of D . Bayer and B. Sturmfels. Here we prove it geometrically in all cases, and we examine a generalization involving the neighborhood complex on an arbitrary lattice

    Monotonic properties of the shift and penetration factors

    Full text link
    We study derivatives of the shift and penetration factors of collision theory with respect to energy, angular momentum, and charge. Definitive results for the signs of these derivatives are found for the repulsive Coulomb case. In particular, we find that the derivative of the shift factor with respect to energy is positive for the repulsive Coulomb case, a long anticipated but heretofore unproven result. These results are closely connected to the properties of the sum of squares of the regular and irregular Coulomb functions; we also present investigations of this quantity.Comment: 13 pages, 1 figur
    • …
    corecore