14 research outputs found
Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador
Funding: This study was funded by NSF EEID DEB 1518681 to SJR, EAM, AMS. EAM was also supported by NIH R35GM133439, NSF DEB-2011147, the Terman Award, the Helman Faculty Fellowship, and the Stanford Center for Innovation in Global Health.Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae. aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January-May), but during an exceptionally dry year. Household level Ae. aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae. aegypti presence. We found that homes were more likely to have Ae. aegypti when households had interruptions in piped water service. Ae. aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae. aegypti breeding habitat.Publisher PDFPeer reviewe
Ingested insecticide to control Aedes aegypti : developing a novel dried attractive toxic sugar bait device for intra-domiciliary control
Laboratory work was Funded by Pontificia Universidad Católica del Ecuadorʼs Internal Research Grant L13234, awarded to MN. Semi-field work was funded by a seed grant from the Syracuse University, awarded to DL.Background: Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. Methods: We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. Results: In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P < 0.0001). Conclusions: The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semi-field conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.Publisher PDFPeer reviewe
Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents
Funding: J.M.C., A.D.L., E.F.L., and E.A.M. were supported by a Stanford Woods Institute for the Environment—Environmental Ventures Program grant (PIs: E.A.M., A.D.L., and E.F.L.). E.A.M. was also supported by a Hellman Faculty Fellowship and a Terman Award. A.D.L., B.A.N., F.M.M., E.N.G.S., M.S.S., A.R.K., R.D., A.A., and H.N.N. were supported by a National Institutes of Health R01 grant (AI102918; PI: A.D.L.). E.A.M., A.M.S.I., and S.J.R. were supported by a National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant (DEB-1518681), and A.M.S.I. and S.J.R. were also supported by an NSF DEB RAPID grant (1641145). E.A.M. was also supported by a National Institute of General Medical Sciences Maximizing Investigators’ Research Award grant (R35GM133439) and an NSF and Fogarty International Center EEID grant (DEB-2011147).Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.Publisher PDFPeer reviewe
Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador
Insecticide resistance (IR) can undermine efforts to control vectors of public health importance. Aedes aegypti is the main vector of resurging diseases in the Americas such as yellow fever and dengue, and recently emerging chikungunya and Zika fever, which have caused unprecedented epidemics in the region. Vector control remains the primary intervention to prevent outbreaks of Aedes-transmitted diseases. In many high-risk regions, like southern Ecuador, we have limited information on IR. In this study, Ae. aegypti IR was measured across four cities in southern Ecuador using phenotypic assays and genetic screening for alleles associated with pyrethroid IR. Bottle bioassays showed significant inter-seasonal variation in resistance to deltamethrin, a pyrethroid commonly used by the Ministry of Health, and alpha-cypermethrin, as well as between-city differences in deltamethrin resistance. There was also a significant difference in phenotypic response to the organophosphate, Malathion, between two cities during the second sampling season. Frequencies of the resistant V1016I genotype ranged from 0.13 to 0.68. Frequencies of the resistant F1534C genotype ranged from 0.63 to 1.0, with sampled populations in Machala and Huaquillas at fixation for the resistant genotype in all sampled seasons. In Machala and Portovelo, there were statistically significant inter-seasonal variation in genotype frequencies for V1016I. Resistance levels were highest in Machala, a city with hyperendemic dengue transmission and historically intense insecticide use. Despite evidence that resistance alleles conferred phenotypic resistance to pyrethroids, there was not a precise correspondence between these indicators. For the F1534C gene, 17.6% of homozygous mutant mosquitoes and 70.8% of heterozygotes were susceptible, while for the V1016I gene, 45.6% homozygous mutants and 55.6% of heterozygotes were susceptible. This study shows spatiotemporal variability in IR in Ae. aegypti populations in southern coastal Ecuador, and provides an initial examination of IR in this region, helping to guide vector control efforts for Ae. aegypti
Number of pools collected per city and year.
In all cities, 2017 was the year with the highest mosquito abundance. Collections were performed during the pre-rainy season in 2016, during the rainy season in 2017, and during the post-rainy season in 2018.</p
Characteristics of cities where collections were performed.
Population data rounded from [17]. Arboviral transmission data from [16].</p
Average mosquito pool size for each sex, region and year.
Average mosquito pool size for each sex, region and year.</p
Infection rates (MLE per 1,000 specimens) of ZIKV in adult <i>Ae</i>. <i>aegypti</i> pools for each city and year.
Infection rates (MLE per 1,000 specimens) of ZIKV in adult Ae. aegypti pools for each city and year.</p
Infection rates (IR) for each city and year.
For all cities, the highest IR was observed in 2018 (corresponding to the post-rainy season) in both male and female specimens.</p