638 research outputs found
Localized amyloidosis presenting with a penile mass: a case report
Amyloidosis is a disease characterized by the deposition of altered proteins in tissues. Amyloid deposition always occurs in the extracellular matrix and presents a fibrillary conformation. Local deposition of amyloid may occur in individual organs, without systemic involvement. We report here a rare case of localized penile shaft amyloidosis--an unusual location for amyloid deposition--presenting as a penile mass that resulted in a urethral stricture in 37-year old male patient. We have also comprehensively reviewed the literature regarding localized amyloidosis
IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis
IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)(2) subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)(2) on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)(2) model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)(2) inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor gamma t and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)(2) suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling.1156Ysciescopu
Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities
Piezoelectric-assisted removal of a benign fibrous histiocytoma of the mandible: An innovative technique for prevention of dentoalveolar nerve injury
In this article, we present our experience with a piezoelectric-assisted surgical device by resection of a benign fibrous histiocytoma of the mandible
Waist-to-Height Ratio Is More Predictive of Years of Life Lost than Body Mass Index
Objective: Our aim was to compare the effect of central obesity (measured by waist-to-height ratio, WHtR) and total obesity (measured by body mass index, BMI) on life expectancy expressed as years of life lost (YLL), using data on British adults.
Methods: A Cox proportional hazards model was applied to data from the prospective Health and Lifestyle Survey (HALS) and the cross sectional Health Survey for England (HSE). The number of years of life lost (YLL) at three ages (30, 50, 70 years) was found by comparing the life expectancies of obese lives with those of lives at optimum levels of BMI and WHtR.
Results: Mortality risk associated with BMI in the British HALS survey was similar to that found in US studies. However, WHtR was a better predictor of mortality risk. For the first time, YLL have been quantified for different values of WHtR. This has been done for both sexes separately and for three representative ages.
Conclusion: This study supports the simple message ‘‘Keep your waist circumference to less than half your height’’. The use of WHtR in public health screening, with appropriate action, could help add years to life
Recommended from our members
Ubiquitin sets the timer: impacts on aging and longevity
Protein homeostasis is essential for cellular function, organismal growth and viability. Damaged and aggregated proteins are turned over by two major proteolytic routes of the cellular quality-control pathways: the ubiquitin-proteasome system and autophagy. For both these pathways, ubiquitination provides the recognition signal for substrate selection. This Commentary discusses how ubiquitin-dependent proteolytic pathways are coordinated with stress- and aging-induced signals
Prediction of Thrombectomy Functional Outcomes using Multimodal Data
Recent randomised clinical trials have shown that patients with ischaemic
stroke {due to occlusion of a large intracranial blood vessel} benefit from
endovascular thrombectomy. However, predicting outcome of treatment in an
individual patient remains a challenge. We propose a novel deep learning
approach to directly exploit multimodal data (clinical metadata information,
imaging data, and imaging biomarkers extracted from images) to estimate the
success of endovascular treatment. We incorporate an attention mechanism in our
architecture to model global feature inter-dependencies, both channel-wise and
spatially. We perform comparative experiments using unimodal and multimodal
data, to predict functional outcome (modified Rankin Scale score, mRS) and
achieve 0.75 AUC for dichotomised mRS scores and 0.35 classification accuracy
for individual mRS scores.Comment: Accepted at Medical Image Understanding and Analysis (MIUA) 202
Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells
To date, there have been a plethora of reports on different means to fabricate organic–inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry
Reactive oxygen species regulate context-dependent inhibition of NFAT5 target genes
The activation of nuclear factor of activated T cells 5(NFAT5), a well-known osmoprotective factor, can be induced by isotonic stimuli, such as activated Toll-like receptors (TLRs). It is unclear, however, how NFAT5 discriminates between isotonic and hypertonic stimuli. In this study we identified a novel context-dependent suppression of NFAT5 target gene expression in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) or a high salt (NaCl) concentration. Although LPS and NaCl both used NFAT5 as a core transcription factor, these stimuli mutually inhibited distinct sets of NFAT5 targets within the cells. Although reactive oxygen species (ROS) are essential for this inhibition, the source of ROS differed depending on the context: mitochondria for high salt and xanthine oxidase for TLRs. Specifically, the high salt-induced suppression of interleukin-6 (IL-6) production was mediated through the ROS-induced inhibition of NFAT5 binding to the IL-6 promoter. The context-dependent inhibition of NFAT5 target gene expression was also confirmed in mouse spleen and kidney tissues that were cotreated with LPS and high salt. Taken together, our data suggest that ROS function as molecular sensors to discriminate between TLR ligation and osmotic stimuli in RAW 264.7 macrophages, directing NFAT5 activity toward proinflammatory or hypertonic responses in a context-dependent manner.open3
- …