3,112 research outputs found

    Changes in inorganic aerosol compositions over the Yellow Sea area from impact of Chinese emissions mitigation

    Get PDF
    Substantial mitigation of air pollutants emissions has been performed since 2013 around Beijing, and changes in the atmospheric characteristics have been expected over the downstream area of Beijing. In this study, both WRF-Chem simulation and on-site measurements were utilized for the Baengnyeong (island) supersite, one of the representative regional background sites located in the Yellow Sea, the entrance area of the long-range transport process in Korea. The changes in the chemical compositions of inorganic aerosols were examined for spring-time during the Chinese emission mitigation period from 2014 to 2016. The measured ratio of ionic species to PM2.5 at the Baengnyeong supersite showed changes in aerosol inorganic chemical compositions from sulfate in 2014 to nitrate in 2015–2016. The modeling results also showed that nitrate was low in 2014 and significantly increased in 2015 and 2016, and the acidic aerosol condition had also changed toward a more neutralized status in both the simulation and the observations. The WRF-Chem modeling study further indicated that the sulfur was not neutralized in 2014. However, in 2015 and 2016, SO2 was more sufficiently neutralized as sulfur emissions were substantially reduced in China, while at the same time nitrate had begun to increase in such a ‘SO2–poor’ condition in Beijing area in China, and thus approaching more enhanced neutralization over the Yellow Sea area. The causes of the higher nitrate based on the modeled characteristics of the ammonia-sulfate-nitrate aerosol formation in response to the SO2 emissions reduction in China are also discussed in this paper

    An unusual anatomical variant of the left phrenic nerve encircling the transverse cervical artery

    Get PDF
    During educational dissection of cadavers, we encountered anatomical variability of the left phrenic nerve. In this cadaver, nerve fibers from C3 and C4 descended and crossed behind the transverse cervical artery (TCA), a branch of the thyrocervical trunk, at the level of the anterior scalene muscle. On the other hand, nerve fibers from C5 descended obliquely above the TCA and then joined the fibers from C3-4 on the medial side of the anterior scalene muscle to form the phrenic nerve. To our knowledge, the encircling of the TCA by the left phrenic nerve in the neck has not yet been reported and may pose as a potential risk for nerve compression during movement of the neck. We discuss several types of anatomical variants of the phrenic nerve and the associated risk during thorax and neck dissection procedures

    Grazing-incidence small-angle X-ray scattering studies on templating nanopores in networked polymer thin films with a multi-armed porogen

    Get PDF
    The mechanism of thermal pore generation in organosilicate thin films loaded with a six-armed star-shaped poly(epsilon-caprolactone) porogen was quantitatively investigated by using in-situ grazing-incidence small-angle X-ray scattering and thermogravimetry. These analyses found that the blend components have a limited miscibility that depends on the compositionfor porogen loadings up to only 20 wt%, molecularly miscible blend films were obtained. Even for the miscible blend films, heating the films produced a curing reaction of the precursor matrix component, leading to the phase separation of the porogen component. This phase separation was found to begin at 393 K for 10 wt% porogen loaded films and at 373 K for 20 wt% porogen loaded films, and to continue for temperatures up to 423 K. The porogen aggregates remained and were confined within the matrix film without any further growth or movement until complete thermal decomposition above 564 K.ope

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    Band gap opening by two-dimensional manifestation of Peierls instability in graphene

    Full text link
    Using first-principles calculations of graphene having high-symmetry distortion or defects, we investigate band gap opening by chiral symmetry breaking, or intervalley mixing, in graphene and show an intuitive picture of understanding the gap opening in terms of local bonding and antibonding hybridizations. We identify that the gap opening by chiral symmetry breaking in honeycomb lattices is an ideal two-dimensional (2D) extension of the Peierls metal-insulator transition in 1D linear lattices. We show that the spontaneous Kekule distortion, a 2D version of the Peierls distortion, takes place in biaxially strained graphene, leading to structural failure. We also show that the gap opening in graphene antidots and armchair nanoribbons, which has been attributed usually to quantum confinement effects, can be understood with the chiral symmetry breaking

    Development of a low Q cavity type beam position monitoring system

    Get PDF

    Biomarker analysis in stage III–IV (M0) gastric cancer patients who received curative surgery followed by adjuvant 5-fluorouracil and cisplatin chemotherapy: epidermal growth factor receptor (EGFR) associated with favourable survival

    Get PDF
    The aim of this study was to analyse the impact of epidermal growth factor receptor (EGFR), thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), thymidine phosphorylase (TP), aurora kinase (ARK) A/B, and excision repair cross-complementing gene 1 (ERCC1) on the efficacy of adjuvant chemotherapy with 5-fluorouracil and cisplatin (FP) after curative gastric resection. Normal and cancer tissue were separately obtained from gastrectomy samples of 153 patients with AJCC stage III–IV (M0) who subsequently treated with adjuvant FP chemotherapy. TS, DPD, TP, ERCC1, and ARK proteins were measured by immunohistochemistry (IHC). EGFR expression was investigated using a standardized IHC with the EGFR PharmDx assay. Amplification of EGFR gene was analysed using fluorescent in situ hybridisation (FISH). In multivariate analysis, stage, ratio of positive to removed lymph nodes, and EGFR expression were significant prognostic factors for overall survival. Patients with higher EGFR expression had better overall survival than those with lower expression (relative risk: 0.475 (95% confidence interval, 0.282–0.791, P=0.005). Low EGFR expression might be a predictive marker for relapse in curative resected stage III–IV (M0) gastric cancer patients who received adjuvant FP chemotherapy
    corecore