204 research outputs found

    Use of parallel erlang density functions to analyze first-pass pulmonary uptake of multiple indicators in dogs

    Full text link
    The gamma and Erlang density functions describe a large class of lagged, right-skewed distributions. The Erlang distribution has been shown to be the analytic solution for a chain of compartments with identical rate constants. This relationship makes it useful for the analysis of first-pass pulmonary drug uptake data following intravenous bolus administration and the incorporation of this analysis into an overall systemic drug disposition model. However, others have shown that one Erlang density function characterizes the residence time distribution of solutes in single tissues with significant systematic error. We propose a model of two Erlang density functions in parallel that does characterize well the arterial appearance of indocyanine green, antipyrine, and alfentanil administered simultaneously by right atrial bolus injection. We derive the equations that permit calculation of the higher order moments of a system consisting of two parallel Erlang density functions and use the results of these calculations from the data for all three indicators to estimate pulmonary capillary blood volume and mean transit time in the dog.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45054/1/10928_2006_Article_BF02353481.pd

    Localized Electronic Structure of Nitrogenase FeMoco Revealed by Selenium K-edge High Resolution X-ray Absorption Spectroscopy

    Get PDF
    The size and complexity of Mo-dependent nitrogenase, a multicomponent enzyme capable of reducing dinitrogen to ammonia, have made a detailed understanding of the FeMo cofactor (FeMoco) active site electronic structure an ongoing challenge. Selective substitution of sulfur by selenium in FeMoco affords a unique probe wherein local Fe–Se interactions can be directly interrogated via high-energy resolution fluorescence detected X-ray absorption spectroscopic (HERFD XAS) and extended X-ray absorption fine structure (EXAFS) studies. These studies reveal a significant asymmetry in the electronic distribution of the FeMoco, suggesting a more localized electronic structure picture than is typically assumed for iron–sulfur clusters. Supported by experimental small molecule model data in combination with time dependent density functional theory (TDDFT) calculations, the HERFD XAS data is consistent with an assignment of Fe2/Fe6 as an antiferromagnetically coupled diferric pair. HERFD XAS and EXAFS have also been applied to Se-substituted CO-inhibited MoFe protein, demonstrating the ability of these methods to reveal electronic and structural changes that occur upon substrate binding. These results emphasize the utility of Se HERFD XAS and EXAFS for selectively probing the local electronic and geometric structure of FeMoco

    Characterization of sequences in human TWIST required for nuclear localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) <sup>37</sup>RKRR<sup>40 </sup>and <sup>73</sup>KRGKK<sup>77 </sup>in the human TWIST (H-TWIST) protein.</p> <p>Results</p> <p>Using site-specific mutagenesis and immunofluorescences, we observed that altered TWIST<sup>NLS1 </sup>K38R, TWIST<sup>NLS2 </sup>K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWIST<sup>NLS2 </sup>K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWIST<sup>NLS1 </sup>with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays.</p> <p>Conclusion</p> <p>Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4.</p

    Functional Diversity of Human Basic Helix-Loop-Helix Transcription Factor TCF4 Isoforms Generated by Alternative 5′ Exon Usage and Splicing

    Get PDF
    BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms

    Gene expression profiling of alveolar soft-part sarcoma (ASPS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.</p> <p>Methods</p> <p>For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).</p> <p>Conclusion</p> <p>Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.</p

    Chemical genetics strategies for identification of molecular targets

    Get PDF
    Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples of molecular targets identified with these approaches

    Association of Transcription Factor 4 (TCF4) variants with schizophrenia and intellectual disability

    Full text link
    Genome wide association studies (GWAS) have revolutionized the study of complex diseases and have uncovered common genetic variants associated with an increased risk for major psychiatric disorders. A recently published schizophrenia GWAS replicated earlier findings implicating common variants in Transcription factor 4 (TCF4) as susceptibility loci for schizophrenia. By contrast, loss of function TCF4 mutations, although rare, cause Pitt-Hopkins syndrome (PTHS); a disorder characterized by intellectual disability (ID), developmental delay and behavioral abnormalities. TCF4 mutations have also been described in individuals with ID and non-syndromic neurodevelopmental disorders. TCF4 is a member of the basic helix-loop-helix (bHLH) family of transcription factors that regulate gene expression at E-box-containing promoters and enhancers. Accordingly, TCF4 has an important role during brain development and can interact with a wide array of transcriptional regulators including some proneural factors. TCF4 may, therefore, participate in the transcriptional networks that regulate the maintenance and differentiation of distinct cell types during brain development. Here, we review the role of TCF4 variants in the context of several distinct brain disorders associated with impaired cognition
    • …
    corecore