89 research outputs found

    Aquilegia, Vol. 35 No. 1, Spring 2011, Newsletter of the Colorado Native Plant Society

    Get PDF
    https://epublications.regis.edu/aquilegia/1136/thumbnail.jp

    Bell's local causality is a d-separation criterion

    Full text link
    This paper aims to motivate Bell's notion of local causality by means of Bayesian networks. In a locally causal theory any superluminal correlation should be screened off by atomic events localized in any so-called \textit{shielder-off region} in the past of one of the correlating events. In a Bayesian network any correlation between non-descendant random variables are screened off by any so-called \textit{d-separating set} of variables. We will argue that the shielder-off regions in the definition of local causality conform in a well defined sense to the d-separating sets in Bayesian networks.Comment: 13 pages, 8 figure

    Bell's local causality is a d-separation criterion

    Get PDF
    This paper aims to motivate Bell’s notion of local causality by means of Bayesian networks. In a locally causal theory any superluminal correlation should be screened off by atomic events localized in any so-called shielder-off region in the past of one of the correlating events. In a Bayesian network any correlation between non-descendant random variables are screened off by any so-called d-separating set of variables. We will argue that the shielder-off regions in the definition of local causality conform in a well defined sense to the d-separating sets in Bayesian networks

    The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing.

    Get PDF
    BACKGROUND: As greater numbers of us are living longer, it is increasingly important to understand how we can age healthily. Although old age is often stereotyped as a time of declining mental abilities and inflexibility, cognitive neuroscience reveals that older adults use neural and cognitive resources flexibly, recruiting novel neural regions and cognitive processes when necessary. Our aim in this project is to understand how age-related changes to neural structure and function interact to support cognitive abilities across the lifespan. METHODS/DESIGN: We are recruiting a population-based cohort of 3000 adults aged 18 and over into Stage 1 of the project, where they complete an interview including health and lifestyle questions, a core cognitive assessment, and a self-completed questionnaire of lifetime experiences and physical activity. Of those interviewed, 700 participants aged 18-87 (100 per age decile) continue to Stage 2 where they undergo cognitive testing and provide measures of brain structure and function. Cognition is assessed across multiple domains including attention and executive control, language, memory, emotion, action control and learning. A subset of 280 adults return for in-depth neurocognitive assessment in Stage 3, using functional neuroimaging experiments across our key cognitive domains.Formal statistical models will be used to examine the changes that occur with healthy ageing, and to evaluate age-related reorganisation in terms of cognitive and neural functions invoked to compensate for overall age-related brain structural decline. Taken together the three stages provide deep phenotyping that will allow us to measure neural activity and flexibility during performance across a number of core cognitive functions. This approach offers hypothesis-driven insights into the relationship between brain and behaviour in healthy ageing that are relevant to the general population. DISCUSSION: Our study is a unique resource of neuroimaging and cognitive measures relevant to change across the adult lifespan. Because we focus on normal age-related changes, our results may contribute to changing views about the ageing process, lead to targeted interventions, and reveal how normal ageing relates to frail ageing in clinicopathological conditions such as Alzheimer's disease.The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) research was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1).This is the final published version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12883-014-0204-

    Comparison of plasma and CSF biomarkers in predicting cognitive decline

    Get PDF
    OBJECTIVES: Concentrations of amyloid-β peptides (Aβ42/Aβ40) and neurofilament light (NfL) can be measured in plasma or cerebrospinal fluid (CSF) and are associated with Alzheimer\u27s disease brain pathology and cognitive impairment. This study directly compared plasma and CSF measures of Aβ42/Aβ40 and NfL as predictors of cognitive decline. METHODS: Participants were 65 years or older and cognitively normal at baseline with at least one follow-up cognitive assessment. Analytes were measured with the following types of assays: plasma Aβ42/Aβ40, immunoprecipitation-mass spectrometry; plasma NfL, Simoa; CSF Aβ42/Aβ40, automated immunoassay; CSF NfL plate-based immunoassay. Mixed effects models evaluated the global cognitive composite score over a maximum of 6 years as predicted by the fluid biomarkers. RESULTS: Analyses included 371 cognitively normal participants, aged 72.7 ± 5.2 years (mean ± standard deviation) with an average length of follow-up of 3.9 ± 1.6 years. Standardized concentrations of biomarkers were associated with annualized cognitive change: plasma Aβ42/Aβ40, 0.014 standard deviations (95% confidence intervals 0.002 to 0.026); CSF Aβ42/Aβ40, 0.020 (0.008 to 0.032); plasma Nfl, -0.018 (-0.030 to -0.005); and CSF NfL, -0.024 (-0.036 to -0.012). Power analyses estimated that 266 individuals in each treatment arm would be needed to detect a 50% slowing of decline if identified by abnormal plasma measures versus 229 for CSF measures. INTERPRETATION: Both plasma and CSF measures of Aβ42/Aβ40 and NfL predicted cognitive decline. A clinical trial that enrolled individuals based on abnormal plasma Aβ42/Aβ40 and NfL levels would require only a marginally larger cohort than if CSF measures were used

    Cognitive Diversity in a Healthy Aging Cohort: Cross-Domain Cognition in the Cam-CAN Project.

    Get PDF
    Objective: Studies of "healthy" cognitive aging often focus on a limited set of measures that decline with age. The current study argues that defining and supporting healthy cognition requires understanding diverse cognitive performance across the lifespan. Method: Data from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) cohort was examined across a range of cognitive domains. Performance was related to lifestyle including education, social engagement, and enrichment activities. Results: Results indicate variable relationships between cognition and age (positive, negative, or no relationship). Principal components analysis indicated maintained cognitive diversity across the adult lifespan, and that cognition-lifestyle relationships differed by age and domain. Discussion: Our findings support a view of normal cognitive aging as a lifelong developmental process with diverse relationships between cognition, lifestyle, and age. This reinforces the need for large-scale studies of cognitive aging to include a wider range of both ages and cognitive tasks.The Cambridge Centre for Aging and Neuroscience (Cam-CAN) research was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1)

    Predicting continuous amyloid PET values with CSF and plasma Aβ42/Aβ40

    Get PDF
    INTRODUCTION: Continuous measures of amyloid burden as measured by positron emission tomography (PET) are being used increasingly to stage Alzheimer\u27s disease (AD). This study examined whether cerebrospinal fluid (CSF) and plasma amyloid beta (Aβ)42/Aβ40 could predict continuous values for amyloid PET. METHODS: CSF Aβ42 and Aβ40 were measured with automated immunoassays. Plasma Aβ42 and Aβ40 were measured with an immunoprecipitation-mass spectrometry assay. Amyloid PET was performed with Pittsburgh compound B (PiB). The continuous relationships of CSF and plasma Aβ42/Aβ40 with amyloid PET burden were modeled. RESULTS: Most participants were cognitively normal (427 of 491 [87%]) and the mean age was 69.0 ± 8.8 years. CSF Aβ42/Aβ40 predicted amyloid PET burden until a relatively high level of amyloid accumulation (69.8 Centiloids), whereas plasma Aβ42/Aβ40 predicted amyloid PET burden until a lower level (33.4 Centiloids). DISCUSSION: CSF Aβ42/Aβ40 predicts the continuous level of amyloid plaque burden over a wider range than plasma Aβ42/Aβ40 and may be useful in AD staging. HIGHLIGHTS: Cerebrospinal fluid (CSF) amyloid beta (Aβ)42/Aβ40 predicts continuous amyloid positron emission tomography (PET) values up to a relatively high burden.Plasma Aβ42/Aβ40 is a comparatively dichotomous measure of brain amyloidosis.Models can predict regional amyloid PET burden based on CSF Aβ42/Aβ40.CSF Aβ42/Aβ40 may be useful in staging AD

    Effect of Race on Prediction of Brain Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament Light

    Get PDF
    OBJECTIVE: To evaluate whether plasma biomarkers of amyloid (Aβ42/Aβ40), tau (p-tau181 and p-tau231) and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups. METHODS: Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE ε4 carrier status and cognitive status. Each participant underwent blood and cerebrospinal fluid (CSF) collection, and amyloid PET was performed in 103 participants (68%). Plasma Aβ42/Aβ40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aβ42/Aβ40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively. RESULTS: There were 76 matched pairs of AA and NHW participants (n=152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE ε4 carriers and 91% were cognitively normal. AA were less likely than NHW to have brain amyloidosis by CSF Aβ42/Aβ40 (22% versus 43% positive, p = 0.003). The Receiver Operating Characteristic Area Under the Curve (ROC AUC) of CSF Aβ42/Aβ40 status with the plasma biomarkers was as follows: Aβ42/Aβ40, 0.86 (95% confidence intervals [CI] 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF Aβ42/Aβ40 status with plasma Aβ42/Aβ40 that included covariates (age, sex, APOE ε4 carrier status, race, and cognitive status), race did not affect the probability of CSF Aβ42/Aβ40 positivity. In similar models based on plasma p-tau181, p-tau231 or Nfl, AA had a lower probability of CSF Aβ42/Aβ40 positivity (Odds Ratio [OR] 0.31 [95% CI 0.13-0.73], OR 0.30 [0.13-0.71]) and OR 0.27 [0.12-0.64], respectively. Models of amyloid PET status yielded similar findings. CONCLUSIONS: Models predicting brain amyloidosis using a high performance plasma Aβ42/Aβ40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA

    MetaMap versus BERT models with explainable active learning: ontology-based experiments with prior knowledge for COVID-19

    Get PDF
    Emergence of the Coronavirus 2019 Disease has highlighted further the need for timely support for clinicians as they manage severely ill patients. We combine Semantic Web technologies with Deep Learning for Natural Language Processing with the aim of converting human-readable best evi-dence/practice for COVID-19 into that which is computer-interpretable. We present the results of experiments with 1212 clinical ideas (medical terms and expressions) from two UK national healthcare services specialty guides for COVID-19 and three versions of two BMJ Best Practice documents for COVID-19. The paper seeks to recognise and categorise clinical ideas, performing a Named Entity Recognition (NER) task, with an ontology providing extra terms as context and describing the intended meaning of categories understandable by clinicians. The paper investigates: 1) the performance of classical NER using MetaMap versus NER with fine-tuned BERT models; 2) the integration of both NER approaches using a lightweight ontology developed in close collaboration with senior doctors; and 3) the easy interpretation by junior doctors of the main classes from the ontology once populated with NER results. We report the NER performance and the observed agreement for human audits
    corecore