33 research outputs found

    Malaria Parasitemia Among Febrile Patients Seeking Clinical Care at an Outpatient Health Facility in an Urban Informal Settlement Area in Nairobi, Kenya.

    Get PDF
    Nairobi is considered a low-risk area for malaria transmission, but travel can influence transmission of malaria. We investigated the demographic characteristics and travel history of patients with documented fever and malaria in a study clinic in a population-based surveillance system over a 5-year period, January 1, 2007 to December 31, 2011. During the study period, 11,480 (68%) febrile patients had a microscopy test performed for malaria, of which 2,553 (22%) were positive. Malaria was detected year-round with peaks in January, May, and September. Children aged 5-14 years had the highest proportion (28%) of positive results followed by children aged 1-4 years (23%). Almost two-thirds of patients with malaria reported traveling outside Nairobi; 79% of these traveled to three counties in western Kenya. History of recent travel (i.e., in past month) was associated with malaria parasitemia (odds ratio: 10.0, 95% confidence interval: 9.0-11.0). Malaria parasitemia was frequently observed among febrile patients at a health facility in the urban slum of Kibera, Nairobi. The majority of patients had traveled to western Kenya. However, 34% reported no travel history, which raises the possibility of local malaria transmission in this densely populated, urban setting. These findings have important implications for malaria control in large Nairobi settlements

    Captures d'écran : la photographie de presse et l'image télévisée

    Get PDF
    Influenza-associated disease burden among children in tropical sub-Saharan Africa is not well established, particularly outside of the 2009 pandemic period. We estimated the burden of influenza in children aged 0-4 years through population-based surveillance for influenza-like illness (ILI) and acute lower respiratory tract illness (ALRI). Household members meeting ILI or ALRI case definitions were referred to health facilities for evaluation and collection of nasopharyngeal and oropharyngeal swabs for influenza testing by real-time reverse transcription polymerase chain reaction. Estimates were adjusted for health-seeking behavior and those with ILI and ALRI who were not tested. During 2008-2012, there were 9,652 person-years of surveillance among children aged 0-4 years. The average adjusted rate of influenza-associated hospitalization was 4.3 (95% CI 3.0-6.0) per 1,000 person-years in children aged 0-4 years. Hospitalization rates were highest in the 0-5 month and 6-23 month age groups, at 7.6 (95% CI 3.2-18.2) and 8.4 (95% CI 5.4-13.0) per 1,000 person-years, respectively. The average adjusted rate of influenza-associated medically attended (inpatient or outpatient) ALRI in children aged 0-4 years was 17.4 (95% CI 14.2-19.7) per 1,000 person-years. Few children who had severe laboratory-confirmed influenza were clinically diagnosed with influenza by the treating clinician in the inpatient (0/33, 0%) or outpatient (1/109, 0.9%) settings. Influenza-associated hospitalization rates from 2008-2012 were 5-10 times higher than contemporaneous U.S. estimates. Many children with danger signs were not hospitalized; thus, influenza-associated severe disease rates in Kenyan children are likely higher than hospital-based estimates suggest

    Estimation of the national disease burden of influenza-associated severe acute respiratory illness in Kenya and Guatemala : a novel methodology

    Get PDF
    Background: Knowing the national disease burden of severe influenza in low-income countries can inform policy decisions around influenza treatment and prevention. We present a novel methodology using locally generated data for estimating this burden. Methods and Findings: This method begins with calculating the hospitalized severe acute respiratory illness (SARI) incidence for children <5 years old and persons ≥5 years old from population-based surveillance in one province. This base rate of SARI is then adjusted for each province based on the prevalence of risk factors and healthcare-seeking behavior. The percentage of SARI with influenza virus detected is determined from provincial-level sentinel surveillance and applied to the adjusted provincial rates of hospitalized SARI. Healthcare-seeking data from healthcare utilization surveys is used to estimate non-hospitalized influenza-associated SARI. Rates of hospitalized and non-hospitalized influenza-associated SARI are applied to census data to calculate the national number of cases. The method was field-tested in Kenya, and validated in Guatemala, using data from August 2009–July 2011. In Kenya (2009 population 38.6 million persons), the annual number of hospitalized influenza-associated SARI cases ranged from 17,129–27,659 for children <5 years old (2.9–4.7 per 1,000 persons) and 6,882–7,836 for persons ≥5 years old (0.21–0.24 per 1,000 persons), depending on year and base rate used. In Guatemala (2011 population 14.7 million persons), the annual number of hospitalized cases of influenza-associated pneumonia ranged from 1,065–2,259 (0.5–1.0 per 1,000 persons) among children <5 years old and 779–2,252 cases (0.1–0.2 per 1,000 persons) for persons ≥5 years old, depending on year and base rate used. In both countries, the number of non-hospitalized influenza-associated cases was several-fold higher than the hospitalized cases. Conclusions: Influenza virus was associated with a substantial amount of severe disease in Kenya and Guatemala. This method can be performed in most low and lower-middle income countries

    Use of population-based surveillance to define the high incidence of shigellosis in an urban slum in Nairobi, Kenya.

    Get PDF
    BACKGROUND: Worldwide, Shigella causes an estimated 160 million infections and >1 million deaths annually. However, limited incidence data are available from African urban slums. We investigated the epidemiology of shigellosis and drug susceptibility patterns within a densely populated urban settlement in Nairobi, Kenya through population-based surveillance. METHODS: Surveillance participants were interviewed in their homes every 2 weeks by community interviewers. Participants also had free access to a designated study clinic in the surveillance area where stool specimens were collected from patients with diarrhea (≥3 loose stools within 24 hours) or dysentery (≥1 stool with visible blood during previous 24 hours). We adjusted crude incidence rates for participants meeting stool collection criteria at household visits who reported visiting another clinic. RESULTS: Shigella species were isolated from 262 (24%) of 1,096 stool specimens [corrected]. The overall adjusted incidence rate was 408/100,000 person years of observation (PYO) with highest rates among adults 34-49 years old (1,575/100,000 PYO). Isolates were: Shigella flexneri (64%), S. dysenteriae (11%), S. sonnei (9%), and S. boydii (5%). Over 90% of all Shigella isolates were resistant to trimethoprim-sulfamethoxazole and sulfisoxazole. Additional resistance included nalidixic acid (3%), ciprofloxacin (1%) and ceftriaxone (1%). CONCLUSION: More than 1 of every 200 persons experience shigellosis each year in this Kenyan urban slum, yielding rates similar to those in some Asian countries. Provision of safe drinking water, improved sanitation, and hygiene in urban slums are needed to reduce disease burden, in addition to development of effective Shigella vaccines

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Influenza in the East African Region

    No full text
    Prior to 2006, little was known on influenza surveillance in the East African region. With the detection of avian influenza A (H5N1) in Africa, several countries in Africa started initiating influenza sentinel surveillance systems. We evaluated both published and unpublished literature to determine seasonal patterns and estimate burden of influenza in the East African region. Annually influenza has been observed to be associated with 9-25% of ILI outpatient visits and 5-10% of SARI hospitalizations in East Africa. Influenza circulates all year round peaking in the months of March to November. Most of the cases reported are children below five years of age. Despite the region having mostly a young population, and poor health seeking behavior, rates from this region are comparable to those seen in temperate countries. Seasonal vaccination using southern hemisphere vaccine in March may be more effective. Targeting selected populations of young children and pregnant women for influenza vaccination may be effective in controlling morbidity and mortality associated with influenza. Modification to the surveillance tools should be made to identify risk factors that may be present in the elderly population currently missed by the current surveillance system

    Predicting Mortality among Hospitalized Children with Respiratory Illness in Western Kenya, 2009–2012

    No full text
    <div><p>Background</p><p>Pediatric respiratory disease is a major cause of morbidity and mortality in the developing world. We evaluated a modified respiratory index of severity in children (mRISC) scoring system as a standard tool to identify children at greater risk of death from respiratory illness in Kenya.</p><p>Materials and Methods</p><p>We analyzed data from children <5 years old who were hospitalized with respiratory illness at Siaya District Hospital from 2009–2012. We used a multivariable logistic regression model to identify patient characteristics predictive for in-hospital mortality. Model discrimination was evaluated using the concordance statistic. Using bootstrap samples, we re-estimated the coefficients and the optimism of the model. The mRISC score for each child was developed by adding up the points assigned to each factor associated with mortality based on the coefficients in the multivariable model.</p><p>Results</p><p>We analyzed data from 3,581 children hospitalized with respiratory illness; including 218 (6%) who died. Low weight-for-age [adjusted odds ratio (aOR) = 2.1; 95% CI 1.3–3.2], very low weight-for-age (aOR = 3.8; 95% CI 2.7–5.4), caretaker-reported history of unconsciousness (aOR = 2.3; 95% CI 1.6–3.4), inability to drink or breastfeed (aOR = 1.8; 95% CI 1.2–2.8), chest wall in-drawing (aOR = 2.2; 95% CI 1.5–3.1), and being not fully conscious on physical exam (aOR = 8.0; 95% CI 5.1–12.6) were independently associated with mortality. The positive predictive value for mortality increased with increasing mRISC scores.</p><p>Conclusions</p><p>A modified RISC scoring system based on a set of easily measurable clinical features at admission was able to identify children at greater risk of death from respiratory illness in Kenya.</p></div
    corecore