5,609 research outputs found

    Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic

    Get PDF
    Offshore banks and seamounts sustain diverse megafaunal communities, including framework reefs formed by cold-water corals. Few studies have quantified environmental effects on the alpha or beta diversity of these communities. We adopted an interdisciplinary approach that used historical geophysical data to identify topographic highs on Hatton Bank, which were surveyed visually. The resulting photographic data were used to examine relationships between megafaunal communities and macrohabitat, the latter defined into six categories (mud, sand, cobbles, coral rubble, coral framework, rock). The survey stations revealed considerable small-scale variability in macrohabitat from exposed Late Palaeocene lava flows to quiescent muddy habitats and coral-built carbonate mounds. The first reported evidence for coral carbonate mound development in UK waters is presented, which was most pronounced near present-day or former sites of topographic change, suggesting that local current acceleration favoured coral framework growth and mound initiation. Alpha diversity varied significantly across macrohabitats, but not between rock and coral rubble, or between smaller grain sized categories of cobbles, sand and mud. Community composition differed between most macrohabitats, and variation in beta diversity across Hatton Bank was largely explained by fine-scale substratum. Certain megafauna were clearly associated with particular macrohabitats, with stylasterid corals notably associated with cobble and rock habitats and coral habitats characterized by a diverse community of suspension-feeders. The visual surveys also produced novel images of deep-water megafauna including a new photographic record of the gorgonian coral Paragorgia arborea, a species not previously reported from Rockall Plateau. Further interdisciplinary studies are needed to interpret beta diversity across these and other environmental gradients on Hatton Bank. It is clear that efforts are also needed to improve our understanding of the genetic connectivity and biogeography of vulnerable deep-water ecosystems and to develop predictive models of their occurrence that can help inform future conservation measures

    Effects of chemical seed treatments on wireworm activities

    Get PDF

    Alien Registration- Long, Henry D. (Orrington, Penobscot County)

    Get PDF
    https://digitalmaine.com/alien_docs/11052/thumbnail.jp

    Digitalis

    Get PDF

    Henry T. Long to James Meredith (12 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_anti/1165/thumbnail.jp

    A study of some lipolytic microorganisms isolated from dairy products

    Get PDF

    Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture

    Get PDF
    In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). Great efforts have been spent on investigating ways to improve the efficiency, reduce costs, and further reduce greenhouse gas emissions. This study focuses on investigating two approaches to achieve these goals. First, replace the subcritical Rankine steam cycle with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Finally, implement several types of CCS, including sweet- and sour-shift pre-combustion and post-combustion. Using the software, Thermoflow®, this study shows that utilizing biomass with coal up to 50% (wt.) can improve the efficiency, and reduce emissions: even making the plant carbon-negative when CCS is used. CCS is best administered pre-combustion using sour-shift, and supercritical steam cycles are thermally and economically better than subcritical cycles. Both capital and electricity costs have been presented

    Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture

    Get PDF
    In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). Great efforts have been spent on investigating ways to improve the efficiency, reduce costs, and further reduce greenhouse gas emissions. This study focuses on investigating two approaches to achieve these goals. First, replace the subcritical Rankine steam cycle with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Finally, implement several types of CCS, including sweet- and sour-shift pre-combustion and post-combustion. Using the software, Thermoflow®, this study shows that utilizing biomass with coal up to 50% (wt.) can improve the efficiency, and reduce emissions: even making the plant carbon-negative when CCS is used. CCS is best administered pre-combustion using sour-shift, and supercritical steam cycles are thermally and economically better than subcritical cycles. Both capital and electricity costs have been presented

    Reflections 1974

    Get PDF
    The 1974 issue of Reflections is dedicated to join editors Becky Sigmon and Henry Long Harrison III. Cover art is by Jan Hafling with Terry Sigmon, Bruce Stuart, and Judy Greene contributing additional art to the issue. Dr. Betty S. Cox served as faculty adviser.https://digitalcommons.gardner-webb.edu/reflections/1001/thumbnail.jp
    corecore