109 research outputs found

    Comprehensive molecular characterization of adenoid cystic carcinoma reveals tumor suppressors as novel drivers and prognostic biomarkers

    Get PDF
    © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Adenoid cystic carcinoma (ACC) is a MYB-driven head and neck malignancy with high rates of local recurrence and distant metastasis and poor long-term survival. New effective targeted therapies and clinically useful biomarkers for patient stratification are needed to improve ACC patient survival. Here, we present an integrated copy number and transcriptomic analysis of ACC to identify novel driver genes and prognostic biomarkers. A total of 598 ACCs were studied. Clinical follow-up was available from 366 patients, the largest cohort analyzed to date. Copy number losses of 1p36 (70/492; 14%) and of the tumor suppressor gene PARK2 (6q26) (85/343; 25%) were prognostic biomarkers; patients with concurrent losses (n = 20) had significantly shorter overall survival (OS) than those with one or no deletions (p < 0.0001). Deletion of 1p36 independently predicted short OS in multivariate analysis (p = 0.02). Two pro-apoptotic genes, TP73 and KIF1B, were identified as putative 1p36 tumor suppressor genes whose reduced expression was associated with poor survival and increased resistance to apoptosis. PARK2 expression was markedly reduced in tumors with 6q deletions, and PARK2 knockdown increased spherogenesis and decreased apoptosis, indicating that PARK2 is a tumor suppressor in ACC. Moreover, analysis of the global gene expression pattern in 30 ACCs revealed a transcriptomic signature associated with short OS, multiple copy number alterations including 1p36 deletions, and reduced expression of TP73. Taken together, the results indicate that TP73 and PARK2 are novel putative tumor suppressor genes and potential prognostic biomarkers in ACC. Our studies provide new important insights into the pathogenesis of ACC. The results have important implications for biomarker-driven stratification of patients in clinical trials. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.info:eu-repo/semantics/publishedVersio

    Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer.

    Get PDF
    Abstract Detection, treatment, and prediction of outcome for men with prostate cancer increasingly depend on a molecular understanding of tumor development and behavior. We characterized primary prostate cancer by monitoring expression levels of more than 8900 genes in normal and malignant tissues. Patterns of gene expression across tissues revealed a precise distinction between normal and tumor samples, and revealed a striking group of about 400 genes that were overexpressed in tumor tissues. We ranked these genes according to their differential expression in normal and cancer tissues by selecting for highly and specifically overexpressed genes in the majority of cancers with correspondingly low or absent expression in normal tissues. Several such genes were identified that act within a variety of biochemical pathways and encode secreted molecules with diagnostic potential, such as the secreted macrophage inhibitory cytokine, MIC-1. Other genes, such as fatty acid synthase, encode enzymes known as drug targets in other contexts, which suggests new therapeutic approaches

    Tissue Transglutaminase Is a Negative Regulator of Monomeric Lacritin Bioactivity

    Get PDF
    PURPOSE. Molar accounting of bioactive fluids can expose new regulatory mechanisms in the growing proteomic focus on epithelial biology. Essential for the viability of the surface epithelium of the eye and for normal vision is the thin, but protein-rich, tear film in which the small tear glycoprotein lacritin appears to play a prominent prosecretory, cytoprotective, and mitogenic role. Although optimal bioactive levels in cell culture are 1 to 10 nM over a biphasic dose optimum, ELISA suggests a sustained tear lacritin concentration in the midmicromolar range in healthy adults. Here we identify a reconciling mechanism. METHODS. Monoclonal anti-lacritin 1F5 antibody was generated, and applied together with a new anti-C-terminal polyclonal antibody to tear and tissue Western blotting. In vitro tissue transglutaminase (Tgm2) cross-linking was monitored and characterized by mass spectrometry. RESULTS. Blotting for lacritin in human tears or saliva surprisingly detected immunoreactive material with a higher molecular weight and prominence equal or exceeding the~23 to 25 kDa band of monomeric glycosylated lacritin. Exogenous Tgm2 initiated lacritin cross-linking within 1 minute and was complete by 90 minutes-even with as little as 0.1 nM lacritin, and involved the donors lysine 82 and 85 and the acceptor glutamine 106 in the syndecan-1 binding domain. Lacritin spiked into lacritin-depleted tears formed multimers, in keeping with~0.6 lM TGM2 in tears. Cross-linking was absent when Tgm2 was inactive, and cross-linked lacritin, unlike recombinant monomer, bound syndecan-1 poorly. Enhanced TGM2 expression correlates with reduced cell viability, caspase activation, TNF receptor clustering, 7 and mitochondrial dysfunction 8 associated with hyperosmolar stress in dry eye. 14 Could TGM2 in tears regulate ocular surface biology? Lacritin is a 12.3 kDa tear prosecretory mitogen 15 with glutamine and lysine residues suitable for TGM2 catalyzed cross-linking. Lacritin promotes corneal epithelial cell survival (Zimmerman K, et al. IOVS 2012;53:ARVO E-Abstract 4231) and proliferation

    Loss of the Urothelial Differentiation Marker FOXA1 Is Associated with High Grade, Late Stage Bladder Cancer and Increased Tumor Proliferation

    Get PDF
    Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC

    Prostate Cancer Induced by Loss of Apc Is Restrained by TGFβ Signaling

    Get PDF
    Recent work with mouse models of prostate cancer (CaP) has shown that inactivation of TGFβ signaling in prostate epithelium can cooperate with deletion of the Pten tumor suppressor to drive locally aggressive cancer and metastatic disease. Here, we show that inactivating the TGFβ pathway by deleting the gene encoding the TGFβ type II receptor (Tgfbr2) in combination with a deletion of the Apc tumor suppressor gene specifically in mouse prostate epithelium, results in the rapid onset of invasive CaP. Micro-metastases were observed in the lymph nodes and lungs of a proportion of the double mutant mice, whereas no metastases were observed in Apc single mutant mice. Prostate-specific Apc;Tgfbr2 mutants had a lower frequency of metastasis and survived significantly longer than Pten;Tgfbr2 double mutants. However, all Apc;Tgfbr2 mutants developed invasive cancer by 30 weeks of age, whereas invasive cancer was rarely observed in Apc single mutant animals, even by one year of age. Further comparison of the Pten and Apc models of CaP revealed additional differences, including adenosquamous carcinoma in the Apc;Tgfbr2 mutants that was not seen in the Pten model, and a lack of robust induction of the TGFβ pathway in Apc null prostate. In addition to causing high-grade prostate intra-epithelial neoplasia (HGPIN), deletion of either Pten or Apc induced senescence in affected prostate ducts, and this restraint was overcome by loss of Tgfbr2. In summary, this work demonstrates that TGFβ signaling restrains the progression of CaP induced by different tumor suppressor mutations, suggesting that TGFβ signaling exerts a general tumor suppressive effect in prostate.This work was supported by a Program Project Grant from the National Cancer Institute (2P01CA104106 to B. Paschal and D. Wotton), and by a pilot grant from the UVA Cancer Center (funded from the CCSG P30 CA44579, the James and Rebecca CraigFoundation, and UVA Women's Oncology fund) to D. Wotton. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Sharon Birdsall for technical assistance, Anindya Dutta and Dan Gioeli for helpful discussions, and Chun-Song Yang for advice and reagent

    The Need for Improvement in Flow Cytometric Analysis of Ploidy and S-Phase Fraction

    No full text
    corecore