779 research outputs found
Design considerations for the bottom cell in perovskite/silicon tandems: a terawatt scalability perspective
Perovskite/silicon tandems have smashed through the 30% efficiency barrier, which represents a promising step towards high efficiency solar modules. However, the processing used to fabricate high efficiency devices is not compatible with mass production. For this technology to be impactful in the urgent fight against climate change and be scalable to the multi-terawatt (TW) level, a shift in mindset is required when designing the silicon bottom cell. In this work, we outline the design requirements for the silicon cell, with a particular focus on the constraints imposed by industrial processing. In doing so, we discuss the type of silicon wafers used, the surface treatment, the most appropriate silicon cell architecture and the formation of metal contacts. Additionally, we frame this discussion in the context of multi-TW markets, which impose additional constraints on the processing relating to the sustainability of the materials used. The discussion herein will help to shape the design of future silicon solar cells for use in tandems, so that the LCOE of solar electricity can be driven to new lows
Varicella‐Zoster virus ORF9 is an antagonist of the DNA sensor cGAS
Varicella‐Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co‐localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell‐free system and phase‐separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS
Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.
Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda
Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile
<p>Background: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression.</p>
<p>Methods: Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3).</p>
<p>Results: Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies.</p>
<p>Conclusions: We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.</p>
HSV-1 employs UL56 to antagonize expression and function of cGAMP channels
DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP
Correction: Potassium is a trigger for conformational change in the fusion spike of an enveloped RNA virus.
Drs. Fontana, Mankouri, and Barr should all have been listed as corresponding authors. Dr. Fontana’s contact information is as follows: Tel.: 44-113-3434170; E-mail: [email protected]. Dr. Mankouri's contact information is as follows: Tel.: 44-113-3435646; E-mail: J. [email protected]
Enhancing caregivers’ understanding of dementia and tailoring activities in frontotemporal dementia:two case studies
PURPOSE: To describe the intervention process and results of the Tailored Activities Program (TAP) in two people diagnosed with Frontotemporal Dementia (FTD). METHOD: TAP is an occupational therapy (OT) community-based intervention program that prescribes personalised activities to reduce difficult behaviours of dementia. The OT works with carers over a 4-month period (assessment, activity prescription, and generalisation of strategies). Study measures were collected (blind researcher) pre- and post- intervention: cognition, functional disability, behavioural symptoms, and Caregiver Confidence and Vigilance. RESULTS: A 51-year-old woman with behavioural-variant FTD could consistently engage in more activities post-intervention, with scores indicating improvements to behaviour, function, and caregiver confidence. A 63-year-old man with semantic variant FTD engaged well in the prescribed activities, with scores reflecting reduced carer distress regarding challenging behaviours and improved caregiver vigilance. CONCLUSIONS: TAP is efficacious in FTD, allowing for differences in approach for FTD subtype, where behavioural symptoms are very severe and pervasive
Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout
The first spectroscopy of excited states in 52Ni (Tz=-2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement
Malaria vaccine efficacy: the difficulty of detecting and diagnosing malaria
New sources of funding have revitalized efforts to control malaria. An effective vaccine would be a tremendous asset in the fight against this devastating disease and increasing financial and scientific resources are being invested to develop one. A few candidates have been tested in Phase I and II clinical trials, and several others are poised to begin trials soon. Some studies have been promising, and others disappointing. It is difficult to compare the results of these clinical trials; even independent trials of the same vaccine give highly discrepant results. One major obstacle in evaluating malaria vaccines is the difficulty of diagnosing clinical malaria. This analysis evaluates the impact of diagnostic error, particularly that introduced by microscopy, on the outcome of efficacy trials of malaria vaccines and make recommendations for improving future trials
A descriptive study of a manual therapy intervention within a randomised controlled trial for hamstring and lower limb injury prevention
The journal has been informed by its publisher BioMed Central that contrary to the statement in this article [Wayne Hoskins, Henry Pollard, Chiropractic & Osteopathy 2010, 18:23], they have been advised by the authors' institution Macquarie University, that its Human Research Ethics Committee did not approve this study. Because the study was conducted without institutional ethics committee approval it has been retracted
- …