12,398 research outputs found

    Ga+ beam lithography for suspended lateral beams and nanowires

    Get PDF
    The authors demonstrate the fabrication of suspended nanowires and doubly clamped beams by using a focused ion beam implanted Ga etch mask followed by an inductively coupled plasma reactive ion etching of silicon. This method will demonstrate how a two-step, completely dry fabrication sequence can be tuned to generate nanomechanical structures on either silicon substrates or silicon on insulator (SOI). This method was used to generate lateral nanowires suspended between 2 ”m scaled structures with lengths up to 16 ”m and widths down to 40 nm on a silicon substrate. The authors also fabricate 10 ”m long doubly clamped beams on SOIs that are 20 nm thick and a minimum of 150 nm wide. In situ electrical measurements of the beams demonstrate a reduction of resistivity from > 37.5 Ω cm down to 0.25 Ω cm. Transmission electron microscopy for quantifying both surface roughness and crystallinity of the suspended nanowires was performed. Finally, a dose array for repeatable fabrication of a desired beam width was also experimentally determined

    Optofluidic circular grating distributed feedback dye laser

    Get PDF
    We demonstrate an optically pumped surface emitting optofluidic dye laser using a second-order circular grating distributed feedback resonator. We present a composite bilayer soft lithography technique specifically developed for the fabrication of our dye laser and investigate a hybrid polymer material system [poly(dimethylsiloxane)/perfluoropolyether] to construct high-resolution Bragg gratings. Our lasers emit single frequency light at low lasing thresholds of 6 ”J/mm^2. These optofluidic dye lasers can serve as low-cost and compact coherent light sources that are fully integrated within microfluidic analysis chips and provide an efficient approach to construct compact spectroscopy systems

    The vicinal difluoro motif : the synthesis and conformation of erythro- and threo-diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids and their derivatives

    Get PDF
    Background: It is well established that vicinal fluorines (RCHF-CHFR) prefer to adopt a gauche rather than an anti conformation when placed along aliphatic chains. This has been particularly recognised for 1,2-difluoroethane and extends to 2,3-difluorobutane and longer alkyl chains. It follows in these latter cases that if erythro and threo vicinal difluorinated stereoisomers are compared, they will adopt different overall conformations if the fluorines prefer to be gauche in each case. This concept is explored in this paper with erythro- and threo- diastereoisomers of 2,3-difluorosuccinates. Results: A synthetic route to 2,3-difluorosuccinates has been developed through erythro- and threo- 1,2-difluoro-1,2-diphenylethane which involved the oxidation of the aryl rings to generate the corresponding 2,3- difluorosuccinic acids. Ester and amide derivatives of the erythro- and threo- 2,3-difluorosuccinic acids were then prepared. The solid and solution state conformation of these compounds was assessed by X-ray crystallography and NMR. Ab initio calculations were also carried out to model the conformation of erythro- and threo- 1,2-difluoro-1,2-diphenylethane as these differed from the 2,3-difluorosuccinates. Conclusion: In general the overall chain conformations of the 2,3-difluorosuccinates diastereoisomers were found to be influenced by the fluorine gauche effect. The study highlights the prospects of utilising the vicinal difluorine motif (RCHF-CHFR) as a tool for influencing the conformation of performance organic molecules and particularly tuning conformation by selecting specific diastereoisomers (erythro or threo).Publisher PDFPeer reviewe

    The design of a Space-borne multispectral canopy LiDAR to estimate global carbon stock and gross primary productivity

    Get PDF
    Understanding the dynamics of the global carbon cycle is one of the most challenging issues for the scientific community. The ability to measure the magnitude of terrestrial carbon sinks as well as monitoring the short and long term changes is vital for environmental decision making. Forests form a significant part of the terrestrial biosystem and understanding the global carbon cycle, Above Ground Biomass (AGB) and Gross Primary Productivity (GPP) are critical parameters. Current estimates of AGB and GPP are not adequate to support models of the global carbon cycle and more accurate estimates would improve predictions of the future and estimates of the likely behaviour of these sinks. Various vegetation indices have been proposed for the characterisation of forests including canopy height, canopy area, Normalised Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI). Both NDVI and PRI are obtained from a measure of reflectivity at specific wavelengths and have been estimated from passive measurements. The use of multi-spectral LiDAR to measure NDVI and PRI and their vertical distribution within the forest represents a significant improvement over current techniques. This paper describes an approach to the design of an advanced Multi-Spectral Canopy LiDAR, using four wavelengths for measuring the vertical profile of the canopy simultaneously. It is proposed that the instrument be placed on a satellite orbiting the Earth on a sun synchronous polar orbit to provide samples on a rectangular grid at an approximate separation of 1km with a suitable revisit frequency. The systems engineering concept design will be presented

    IMPROVING KNOWLEDGE COORDINATION IN EARLY STAGES OF SOFTWARE DEVELOPMENT USING GAMIFICATION

    Get PDF
    Research on software development teams, both co-located and virtual, reveals that additional focus is necessary to improve coordination. This research-in-progress explores one element of gamification for improvingthe initial stages of software team coordination. We develop a model to empirically test the effects of gamification during software requirements elicitation on both co-located and virtual teams based on a controlled 2 x 3 experiment

    KATP Channel Openers Have Opposite Effects on Mitochondrial Respiration Under Different Energetic Conditions

    Get PDF
    Mitochondrial (m) KATP channel opening has been implicated in triggering cardiac preconditioning. Its consequence on mitochondrial respiration, however, remains unclear. We investigated the effects of two different KATP channel openers and antagonists on mitochondrial respiration under two different energetic conditions. Oxygen consumption was measured for complex I (pyruvate/malate) or complex II (succinate with rotenone) substrates in mitochondria from fresh guinea pig hearts. One of two mKATP channel openers, pinacidil or diazoxide, was given before adenosine diphosphate in the absence or presence of an mKATP channel antagonist, glibenclamide or 5-hydroxydecanoate. Without ATP synthase inhibition, both mKATP channel openers differentially attenuated mitochondrial respiration. Neither mKATP channel antagonist abolished these effects. When ATP synthase was inhibited by oligomycin to decrease [ATP], both mKATP channel openers accelerated respiration for both substrate groups. This was abolished by mKATP channel blockade. Thus, under energetically more physiological conditions, the main effect of mKATP channel openers on mitochondrial respiration is differential inhibition independent of mKATP channel opening. In contrast, under energetically less physiological conditions, mKATP channel opening can be evidenced by accelerated respiration and blockade by antagonists. Therefore, the effects of mKATP channel openers on mitochondrial function likely depend on the experimental conditions and the cell\u27s underlying energetic state

    Techniques of cryogenic reactive ion etching in silicon for fabrication of sensors

    Get PDF
    Cryogenic etching of silicon, using an inductively coupled plasma reactive ion etcher (ICP-RIE), has extraordinary properties which can lead to unique structures difficult to achieve using other etching methods. In this work, the authors demonstrate the application of ICP-RIE techniques which capitalize on the cryogenic properties to create different sensors geometries: optical, electrical, magnetic, and mechanical. The three techniques demonstrated are (1) single step deep etches with controllable sidewall profiles. Demonstrating this, silicon pillars with over 70 ”m depth and less than 250 nm sidewall roughness were etched using only 1.6 ”m of photoresist for use as solar cells. (2) Using the cryogenic etch for thick metallization and liftoff with a thin photoresist mask. Demonstrating this second technique, a magnetic shim was created by deposition of 6.5 ”m of iron into 20 ”m deep etched trenches, using the remaining 1.5 ”m photoresist etch mask as the liftoff mask. Using the same technique, 15 ”m of copper was lifted off leaving a 20 ”m deep plasma enhanced chemical vapor deposition silicon oxide coated, silicon channel with copper. (3) Use of a two step cryogenic etch for deep etching with reduced sidewall undercutting. This was demonstrated by fabrication of deep and anisotropic microelectromechanical systems structures; a mechanical resonator was etched 183 ”m deep into silicon with less than 3 ”m of undercutting. This work also describes the etch parameters and etch controls for each of these sensors
    • 

    corecore