1,822 research outputs found

    Electromagnetic power of merging and collapsing compact objects

    Full text link
    [Abridged] Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a NS and at the spin-down stage of the resulting BH. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation. We find exact non-linear time-dependent split-monopole structure of magnetosphere driven by spinning and collapsing NS in Schwarzschild geometry. Based on this solution, we argue that the collapse of a NS into the BH happens smoothly, without natural formation of current sheets or other dissipative structures on the open field lines and, thus, does not allow the magnetic field to become disconnected from the star and escape to infinity. Thus, as long as an isolated Kerr BH can produce plasma and currents, it does not lose its open magnetic field lines, its magnetospheric structure evolved towards a split monopole and the BH spins down electromagnetically. The "no hair theorem", which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the BH. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic BH engine forever. We also discuss the nature of short Gamma Ray Bursts and suggest that the similarity of the early afterglows properties of long and short GRBs can be related to the fact that in both cases a spinning BH can retains magnetic field for sufficiently long time to extract a large fraction of its rotation energy and produce high energy emission via the internal dissipation in the wind

    Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    Get PDF
    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate \Omb and the background magnetic field strength \Bref. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.Comment: 23 pages, 1 figure, aastex, to appear in the Astrophysical Journal (10 Dec 1998

    Rotation and X-ray emission from protostars

    Full text link
    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiquitous on T Tauri stars. We find that YLW15 is a fast rotator (near break-up), while WL6 rotates with a significantly longer period. We derive a mass M_\star ~ 2 M_\odot and \simlt 0.4 M_\odot for the central stars of YLW15 and WL6 respectively. On the long term, the interactions between the star and the disk results in magnetic braking and angular momentum loss of the star. On time scales t_{br} ~ a few 10^5 yrs, i.e., of the same order as the estimated duration of the Class~I protostar stage. Close to the birthline there must be a mass-rotation relation, t_{br} \simpropto M_\star, such that stars with M_\star \simgt 1-2 M_\odot are fast rotators, while their lower-mass counterparts have had the time to spin down. The rapid rotation and strong star-disk magnetic interactions of YLW15 also naturally explain the observation of X-ray ``superflares''. In the case of YLW15, and perhaps also of other protostars, a hot coronal wind (T~10^6 K) may be responsible for the VLA thermal radio emission. This paper thus proposes the first clues to the rotation status and evolution of protostars.Comment: 13 pages with 6 figures. To be published in ApJ (April 10, 2000 Part 1 issue

    A multi-site method to capture turnover in rare to common interactions in bipartite species networks

    Get PDF
    1. Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. 2. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. 3. We demonstrate the application and value of this method using a host–parasitoid system sampled along gradients of environmental modification. 4. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. 5. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained

    Electrostatically confined Quantum Rings in bilayer Graphene

    Full text link
    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0B_{0}) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0→−B0B_0 \to -B_0 transformation and, for a fixed total angular momentum index mm, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anti-crossings, which arise due to the overlap of gate-confined and magnetically-confined states.Comment: 5 pages, 6 figures, to appear in Nano Letter
    • …
    corecore