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Mapping of wave packets in direct fragmentation via pump–probe
frequency integrated fluorescence spectroscopy

V. Engela) and N. E. Henriksen
Department of Chemistry, Technical University of Denmark, DTU 207, DK-2800 Lyngby, Denmark

~Received 27 July 1999; accepted 7 October 1999!

We consider femtosecond excitation of a molecule to a dissociative electronic state. The quantum
dynamics is recorded via delayed excitation to a higher electronic state and measurement of the total
fluorescence from this state detected as a function of delay time. It is shown that the signal can be
used to determine the probability density distribution of the outgoing wave packet describing the
fragmentation. This, in particular, applies to the case of fragment detection since then the
time-dependent signal directly measures the probability flux at a fixed value of the dissociation
coordinate. Numerical examples illustrate the procedure. ©2000 American Institute of Physics.
@S0021-9606~00!71101-9#

I. INTRODUCTION

The dynamics of elementary physical and chemical pro-
cesses can be followed in real time by femtosecond pump–
probe spectroscopy.1–5 From these measurements one can,
e.g., extract various characteristic times like the dissociation
time of a chemical bond.

It has been shown recently that this technique also al-
lows for the determination of probability density distribu-
tions as a function of time and internuclear distance. That is,
the dynamics of wave packets can be mapped. To that end,
time-frequency resolved emission spectroscopy,6 time-
resolved photoelectron spectroscopy,7 time-resolved Cou-
lomb explosion,8 and time-resolved time-of-flight fragment
detection9 has been used. For example, time-resolved Cou-
lomb explosion is a femtosecond pump–probe technique
where the distribution of internuclear distances, at the time
when the probe pulse ionizes the molecule, is inferred from
the Coulomb-potential energy between the nuclei.

In any of the above methods, the signal has to be re-
corded as a function of delay-time and an energy. This is
often experimentally demanding. The purpose of this paper
is to show that it is possible to obtain the absolute square of
molecular nuclear packets directly fromintegratedpump–
probe fluorescence spectroscopy, where the signal depends
on delay-time only. The main result is that the time-
derivative of the signal is related to the absolute square of the
wave function at a given point. The position of this point is,
roughly, selected by the resonance condition for a given
probe laser frequency. When, for example, direct photofrag-
mentation is considered, the wave packet density in coordi-
nate space describing the fragment motion can be con-
structed using the known asymptotic mean speed of the
fragments.

This paper is organized as follows: In Sec. II, we sum-
marize the theoretical approach to the calculation of inte-
grated pump–probe fluorescence signals within the frame-

work of perturbation theory. We describe how the time-
derivative of the integrated pump–probe fluorescence signal
is related to the probability flux and how this quantity is
related to the absolute square of the wave function. Section
III contains a numerical example for the direct dissociation
of ICN into I 1 CN. A perfect agreement is obtained be-
tween the wave packet extracted from the integrated pump–
probe signal and the actually calculated wave packet. Fi-
nally, a summary is given in Sec. IV.

II. FLUX MAPPING PROCEDURE

A. Pump–probe signals

The interaction of a molecule with two time-delayed
femtosecond laser pulses is treated in what follows. Figure 1
displays the excitation scheme; potential curves as a function
of a single coordinater are shown for two electronic states of
a molecule. This one-dimensional picture is appropriate for
diatomic molecules; in the case of larger systems,r denotes
the reaction coordinate. Starting from an initial wave func-
tion c0 in the electronic ground state~0! the pump excitation
prepares a time-dependent wave function in an excited elec-
tronic state~1! which can be written within first order per-
turbation theory as~atomic units are employed!

c1~ t !52 i E
2`

t

dt8U1~ t2t8!W1~ t8!U0~ t8!c0 . ~1!

Here Un(t) is the time-evolution operator in the electronic
state~n! and the field-molecule interaction in the dipole ap-
proximation is given as

W1~ t !52 1
2 m01 f ~ t ! e2 iv1t. ~2!

f (t) denotes a pulse envelope,v1 the frequency, andm01 is
the projection of the transition dipole moment on the polar-
ization of the electric field. Only the term leading to absorp-
tion is considered.

a!Permanent address: Institut fu¨r Physikalische Chemie, Universita¨t
Würzburg, Am Hubland, D-97074 Wu¨rzburg, Germany.
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The probe process is initiated by a second pulse delayed
by a timeT, and a wave function in the electronic state~2! is
created. Using again first order perturbation theory, this
function takes the form,

c2~ t !52 i E
2`

t

dt8U2~ t2t8!W2~ t82T!c1~ t8!, ~3!

wherec1(t) is given by Eq.~1!. The interaction energy is

W2~ t2T!52 1
2 m12 f ~ t2T! e2 iv2(t2T). ~4!

Here the notation of the different quantities is analogous as
above. The total pump–probe fluorescence signalP(T) is
assumed to be proportional to the norm ofc2(t) after the
second pulse decayed to zero,

P~T!5 lim
t→`

E druc2~r ,t !u2. ~5!

If one neglects commutators between the kinetic energy op-
erators and the potentials appearing in the propagators, the
signal can be written as10–14

P~T!5E druF~D~r !2v2!u2uc1~r ,T!u2, ~6!

where we used the definition

F~D~r !2v2!5E
2`

1`

dt f~ t !ei (D(r )2v2)t ~7!

and D(r )5V2(r )2V1(r ) is the difference between the po-
tential energy curves in the electronic states~2! and ~1!.
Thus, the signal measures the norm of the wave packetc1 at
time T within the window F(D(r )2v2) ~Franck–Condon
window!. The latter is centered around the region where the
laser frequency equals the difference potentialD(r ).

B. Flux mapping

Let us discuss the case of fragment detection for a dis-
sociation process. Here the carrier frequency of the probe
laser is tuned to match the asymptotic value of the difference
potential (D(r 5`)5D). Then the Franck–Condon window
extends from a critical distancea to infinity ~see Fig. 1!.
Naturally, since the ultrashort probe pulse is spectrally broad
this distance is defined within the energy uncertainty of the
pulse only. The pump–probe signal becomes different from
zero if the wave packetc1 passes the distancea.

To a good approximation, we can replace the Franck–
Condon window by a Theta function,F(D(r )2v2)
5u(r 2a), so that the signal becomes

P~T!5E
a

`

druc1~r ,T!u2. ~8!

We now show that the integrated signal can be used to obtain
the probability density distributionr1(r ,T)5uc1(r ,T)u2 .
Therefore we calculate the time-derivative of the signal to
obtain

d

dT
P~T!5E

a

`

drc1* ~r ,T!
d

dT
c1~r ,T!1c.c., ~9!

where c.c. denotes the complex conjugate. Inserting the first-
order expression from Eq.~1! yields

d

dT
P~T!5E

a

`

drc1* ~r ,T!~2 iH 1c1~r ,T!

2 iW1~T!U0~T!c0~r !!1c.c. ~10!

The second term vanishes exactly for nonoverlapping
pump—and probe—pulses and is most likely to be zero since
the critical distancea in general will not fall into the Franck–
Condon region for the pump excitation~see Fig. 1!. Further-
more for r .a the excited state HamiltonianH1 equals the
kinetic-energy operator except for a constant which does not
change the following expressions. Thus we arrive at the
equation

d

dT
P~T!5

i

2mE
a

`

drc1* ~r ,T!
d2

dr2
c1~r ,T!1c.c., ~11!

m being a mass. The integral can now be evaluated to give
the final expression for the time-derivative of the pump–
probe signal,

d

dT
P~T!5

2 i

2m H c1* ~r ,T!
d

dr
c1~r ,T!

2c1~r ,T!
d

dr
c1* ~r ,T!J

a

5 j ~a,T!, ~12!

where the subscript indicates that the expression has to be
evaluated atr 5a. Thus, the time-derivative of the signal
equals the probability fluxj (a,T) through the pointr 5a.
Although (d/dT)P(T) does not directly reflect the probabil-
ity density at a certain point in time, it is very much related
to it. Writing the wave function in terms of the densityr1 ,15

c1~r ,T!5Ar1~r ,T!eiS(r ,T) ~13!

FIG. 1. Pump–probe scheme for direct dissociation; the pump pulse (v1)
prepares a wave packet in an excited electronic state with potential curve
V1 . The probe step (v2) induces a transition to another electronic state (V2)
and the total fluorescence from this state is measured. The probe-laser fre-
quency is chosen such, that the wave packet is probed when it enters the
asymptotic region where the distancer exceeds a critical pointa. This spa-
tial window is denoted asQ(r 2a). The potentials represent a simple model
for ICN dissociation wherer is the I–C distance relative to the equilibrium
position in the electronic ground state.
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with a real functionS(r ,T), the signal takes the form,

d

dT
P~T!5

1

m H r1~r ,T!
d

dr
S~r ,T!J

a

. ~14!

If the function S(r ,T) depends only weakly on time, the
signal indeed is proportional to the probability density pass-
ing througha.

To get some insight into the time-dependence ofS(r ,T),
it is instructive to regard the motion of a free Gaussian wave
packet which can be written as

cG~r ,t !5eiAt(r 2r t)
21 ip0(r 2r t)1 ist, ~15!

where At and st are complex parameters,p0 is the mean
momentum, andr t is the center of the Gaussian. If we ne-
glect the real part ofAt the function (d/dr)S equalsp0 , and
indeed it does not depend on time. Then the flux has the
interpretation of being the product of the probability density
times the mean velocity.15 In more detail, if at timet5t0 the
parameterAt is equal toA0 , then its time-dependence is
given as16

At5
A0

11~2A0 /m!~ t2t0!
. ~16!

The time needed for the pump–probe signal to increase from
zero to a constant value approximately equals the time it
takes a wave packet to pass a distance corresponding to its
width Dr 0 at time t0 . Replacing (t2t0) by Dr 0 /v0 and
rewriting the velocity in terms of the available energyE, one
finds

At5
A0

11~2A0Dr 0!/~A2mE!
. ~17!

It then follows that the time-dependence ofAt is weak for
large mass and available energy. The above connection en-
ables us to determiner1 as a function of distance as will be
demonstrated in Sec. III, using a numerical example.

Let us, at this point, comment on the general, multidi-
mensional~N-dimensional! case. Here the mapping is, of
course, not unique in the sense that a signal recorded as a
function of one parameter cannot reflect a density depending
on many coordinates. In the above equations now all the
spatial integrals become multiple integrals. The critical dis-
tance a has to be replaced by a hypersurface. The time-
derivative of the signal measures the flux into this surface.
However, if the concept of a reaction coordinate holds, the
N21 dimensions corresponding to bound degrees of free-
dom can be integrated out and the flux-mapping procedure
will give, to a good approximation, a cut of the moving wave
packet along this coordinate.

Let us, for completeness, discuss the detection of the
wave packet in the inner potential region~transition-state
detection!. In this case the probe frequency is chosen such
that the Franck–Condon window is located at smaller dis-
tances, so that the probe excitation takes place at times be-
fore the wave packetc1 reaches the asymptotic region. To a
good approximation, we can replace the window function
F(D(r )2v2) by a function u(r 2(a2d))u((a1d)2r )

with a width 2d. Following the same manipulations as
above, the time derivative of the pump–probe signal takes
the form

d

dT
P~T!5 j ~a2d,T!2 j ~a1d,T!. ~18!

Here we assumed that the potentialV1(r ) is equal at the
points a and b, since otherwise an additional term is to be
considered@see Eq.~10!#. Thus, we measure the difference
of fluxes at two spatial points for a given time and it is not
obvious how to invert the densityr1(r ,t). However, if the
pointsa andb are separated by a sufficiently small distance,
that is, the Franck–Condon window is small, we may write

d

dT
P~T!;~2d!

j ~a2d,T!2 j ~a1d,T!

2d

;2~2d!H d

dr
j ~r ,T!J

a

5~2d!
d

dT
r1~a,T!, ~19!

where the last equality follows from the continuity equation
satisfied byr1(r ,t).15 Integrating over time one finds the
equation,

P~T!;~2d!r1~a,T!, ~20!

which alternatively can be obtained directly from Eq.~6!
within the same approximations. Thus, in the case of a
transition-state detection and for a narrow Franck–Condon
window, the density can be directly correlated to the pump–
probe signal.

III. NUMERICAL EXAMPLE

A. Model

The dissociation of ICN into I1 CN will be chosen as a
numerical example. In the first gas phase femtosecond time-
resolved experiments, Zewail and co-workers investigated
this system.17,18 Quantum calculations were performed
within a one-dimensional model by Williams and Imre19 and
a good overall agreement was found with the data. Later it
was shown by Heather and Metiu20 that the rotational de-
grees of freedom have to be considered to explain finer de-
tails of the experiment. Here we use the simple model of
Williams and Imre. The employed potential curves are dis-
played in Fig. 1 as a function of the I–C separation using the
equilibrium distance in the electronic ground state as the
origin of the axis. The origin of the energy scale corresponds
to the eigenenergy of the initial wavefunctionc0 in the elec-
tronic ground state. The initial state was taken to be a Gauss-
ian centered atr 50 with a width ~full-width at half-
maximum! of 0.1 a.u. We solve the time-dependent
Schrödinger equation with the split-operator method21 and
the time-integrals which appear in perturbation theory are
calculated as described in Ref. 22. The transition dipole mo-
ments were set to unity in all calculations and Gaussian en-
velope functions for the pump pulse were employed through-
out.
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B. Flux mapping

Figure 2~a! displays pump–probe signals calculated for
two different widths ~full-width at half-maximum! of the
pump laser, as indicated. Here the simple expression in Eq.
~8! for the signal and a distance ofa53 a.u. was employed.
The frequency was set to 4.6 eV which corresponds to exci-
tation in the vicinity of the absorption maximum. In both
cases the timeT50 corresponds to the maximum of the
respective pump pulse. The typical increase from zero to a
constant is seen which reflects the motion of the prepared
wave packet into the excitation window. The particular form
of the function can be understood analytically using a gen-
eralized Gaussian wave packet forc1(r ,T).23

The lower panel shows the time-derivative of the signal.
In both cases one finds a Gaussian-type curve which is
broader for the longer pump pulse. We now will map these
curves into coordinate space using the procedure proposed in
Sec. II B. Since the wave packets are located in the
asymptotic region they move with a constant speed towards
larger distances. We assume the expectation value of the
energy to bêc1uH1uc1&5v12V1(r 5`) which reflects en-
ergy conservation in the limit of long pulses. Then the ve-
locity v0 is given byv05A2(v12V1(r 5`))/m, wherem is
the reduced mass of the I–CN system. Using this value ther
dependent density can be obtained as

r1~a1v0t,T!;H d

dl
P~l!J

l5T2t

. ~21!

In performing the construction of the wave-packet density it
should be clear that in order to obtain it in its entirety, the
wave packet must have passed completely the pointa.

Figure 3 compares the actually calculated densities
r1(r ,t) with the densities obtained via Eq.~21!. Here we
used pulses of 30~60! fs width and Eq.~21! was applied 140
~180! fs after the maximum of the respective pump-pulse.
The different curves for either pulse length are hardly distin-
guishable. This confirms that indeed the probability density
amplitudes can be inverted from the pump–probe fluores-
cence signal and the time-dependence of the phase function
(d/dr)S(r ,T) is neglegible in our example.

We note that the outgoing wave packet spreads in the
coordinate space. The spreading cannot be determined from
the signal. However, this would in principle be possible if
excitation to another excited electronic state at a different
critical distancea could be achieved. Furthermore the dis-
tancea is, in general, not precisely known. In this case the
r-dependent density can be determined from an experimental
signal within an unknown shift on ther-axis only.

IV. SUMMARY

As the main result of the present paper we have shown
that it is possible to invert probability densitiesr1(r ,T) from
frequency integrated time-resolved pump–probe fluores-
cence signals. If the probe laser frequency is chosen to in-
duce transitions in the dissociation products, the time-
derivative of the signal equals the probability flux through
the critical distancea, where the interaction potential be-
tween the fragments is close to zero. Since this flux is pro-
portional tor1(a,T), one is able to construct the density as a
function of the reaction coordinater. If the distancea is

FIG. 2. Panel~a! shows the calculated pump–probe signalP(T) for pump
pulses of different width, as indicated. Panel~b! contains the time-derivative
of P(T). The zero of the time-scale corresponds to the center of the respec-
tive pump pulse.

FIG. 3. Comparison of the absolute square of the wave function obtained
from the time-propagation~solid line! and from the flux-mapping procedure
~dashed line!. The respective curves were normalized to assume the same
value at their maximum. Functions for pulses of 30~a! and 60 fs~b! are
shown at different times.
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known this is possible on an absolute scale, otherwise the
density will be shifted by an unknown amount on the coor-
dinate scale.

The flux mapping procedure is illustrated in Fig. 4; the
wave packet prepared in the pump process enters the detec-
tion window starting at distancea at time T1 @panel ~a!#.
Moving with a constant speedv0 , it is completely located
within the window at timeT2 . This gives rise to the increase
of the pump–probe signal shown in panel~b!. The time-
derivative of the signal is equal to the flux through the point
a @panel~c!#. The latter is proportional to the absolute square
of the wave packet which allows for a construction of the
density using a linear transformation@panel~d!#.

In the case of transition-state detection, a similar con-
struction of the probability density is possible. This, how-
ever, rests on the assumption that the Franck–Condon win-
dow for the probe excitation is sufficiently narrow.

The present procedure does not require the recording of
a two-dimensional signal to construct the wave-packet den-
sity as is necessary in other methods. However, the applica-
tion of the method to purely bound state motion is limited
and its strength lies in the construction of wave-packet den-
sities for fragment motion in the case of direct dissociation.
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