304 research outputs found
Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust
Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation–catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties
Quantum transport in double-gated graphene devices
Double-gated graphene devices provide an important platform for understanding
electrical and optical properties of graphene. Here we present transport
measurements of single layer, bilayer and trilayer graphene devices with
suspended top gates. In zero magnetic fields, we observe formation of pnp
junctions with tunable polarity and charge densities, as well as a tunable band
gap in bilayer graphene and a tunable band overlap in trilayer graphene. In
high magnetic fields, the devices' conductance are quantized at integer and
fractional values of conductance quantum, and the data are in good agreement
with a model based on edge state equilibration at pn interfaces
Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene
The flat bands in bilayer graphene(BLG) are sensitive to electric fields
E\bot directed between the layers, and magnify the electron-electron
interaction effects, thus making BLG an attractive platform for new
two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the
possibility of a variety of interesting broken symmetry states, some
characterized by spontaneous mass gaps, when the electron-density is at the
carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in
bilayer graphene are analogous[17,18] to the masses generated by broken
symmetries in particle physics and give rise to large momentum-space Berry
curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though
recent experiments[20-23] have provided convincing evidence of strong
electronic correlations near the CNP in BLG, the presence of gaps is difficult
to establish because of the lack of direct spectroscopic measurements. Here we
present transport measurements in ultra-clean double-gated BLG, using
source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the
CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but
increases monotonically with a magnetic field B, with an apparent particle-hole
asymmetry above the gap, thus providing the first mapping of the ground states
in BLG.Comment: 4 figure
Dirac electrons in graphene-based quantum wires and quantum dots
In this paper we analyse the electronic properties of Dirac electrons in
finite-size ribbons and in circular and hexagonal quantum dots made of
graphene.Comment: Contribution for J. Phys.: Cond. Mat. special issue on graphene
physic
On the Evolutionary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus-Auriga
[abridged] We present high resolution optical spectra of stars in
Taurus-Auriga whose circumstellar environment suggests that they are less
evolved than optically revealed T Tauri stars. Many of the stars are seen only
via scattered light. These spectra are used to search for differences between
stars which power Herbig-Haro flows and stars which do not, and to reassess the
evolutionary state of so-called protostars (Class I stars) relative to
optically revealed T Tauri stars (Class II stars). The stellar mass
distribution of Class I stars is similar to that of Class II stars and includes
3 Class I brown dwarfs. Class I stars in Taurus are slowly rotating; the
angular momentum of a young star appears to dissipate prior to the optically
revealed T Tauri phase. The mass accretion rates of Class I stars are
surprisingly indistinguishable from those of Class II stars; they do not have
accretion dominated luminosities. We confirm previous results that find larger
forbidden-line emission associated with Class I stars than Class II stars. We
suggest that this is caused by an orientation bias that allows a more direct
view of the somewhat extended forbidden emission line regions than the obscured
stellar photospheres, rather than because of larger mass outflow rates.
Overall, the similar masses, luminosities, rotation rates, mass accretion
rates, mass outflow rates, and millimeter flux densities of Class I and Class
II stars are best explained by a scenario in which most Class I stars are no
longer in the main accretion phase and are older than traditionally assumed.
Similarly, although stars which power Herbig-Haro flows appear to have larger
mass outflow rates, their stellar and circumstellar properties are generally
indistinguishable from those of stars that do not power these flows.Comment: 84 pages, including 21 figures; accepted for publication in Ap
The Inhibitory Effect of Salmon Calcitonin on Tri-Iodothyronine Induction of Early Hypertrophy in Articular Cartilage
Salmon calcitonin has chondroprotective effect both in vitro and in vivo, and is therefore being tested as a candidate drug for cartilage degenerative diseases. Recent studies have indicated that different chondrocyte phenotypes may express the calcitonin receptor (CTR) differentially. We tested for the presence of the CTR in chondrocytes from tri-iodothyronin (T3)-induced bovine articular cartilage explants. Moreover, investigated the effects of human and salmon calcitonin on the explants.Early chondrocyte hypertrophy was induced in bovine articular cartilage explants by stimulation over four days with 20 ng/mL T3. The degree of hypertrophy was investigated by molecular markers of hypertrophy (ALP, IHH, COLX and MMP13), by biochemical markers of cartilage turnover (C2M, P2NP and AGNxII) and histology. The expression of the CTR was detected by qPCR and immunohistochemistry. T3-induced explants were treated with salmon or human calcitonin. Calcitonin down-stream signaling was measured by levels of cAMP, and by the molecular markers.Compared with untreated control explants, T3 induction increased expression of the hypertrophic markers (p<0.05), of cartilage turnover (p<0.05), and of CTR (p<0.01). Salmon, but not human, calcitonin induced cAMP release (p<0.001). Salmon calcitonin also inhibited expression of markers of hypertrophy and cartilage turnover (p<0.05).T3 induced early hypertrophy of chondrocytes, which showed an elevated expression of the CTR and was thus a target for salmon calcitonin. Molecular marker levels indicated salmon, but not human, calcitonin protected the cartilage from hypertrophy. These results confirm that salmon calcitonin is able to modulate the CTR and thus have chondroprotective effects
Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption - implications for osteoclast quality
<p>Abstract</p> <p>Background</p> <p>Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function.</p> <p>Methods</p> <p>Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits.</p> <p>Results</p> <p>All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity.</p> <p>Conclusions</p> <p>We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.</p
- …