9 research outputs found

    Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines

    Get PDF
    Conditional expression of short hairpin RNAs (shRNAs) to knock down target genes is a powerful tool to study gene function. The most common inducible expression systems are based on tetracycline-regulated RNA polymerase III promoters. During the last years, several tetracycline-inducible U6 and H1 promoter variants have been reported in different experimental settings showing variable efficiencies. In this study, we compare the most common variants of these promoters in several mammalian cell lines. For all cell lines tested, we find that several inducible U6 and H1 promoters containing single tetracycline operator (tetO) sequences show high-transcriptional background in the non-induced state. Promoter variants containing two tetO sequences show tight suppression of transcription in the non-induced state, and high tet responsiveness and high gene knockdown efficiency upon induction in all cell lines tested. We report a variant of the H1 promoter containing two O2-type tetO sequences flanking the TATA box that shows little transcriptional background in the non-induced state and up to 90% target knockdown when the inducer molecule (dox–doxycycline) is added. This inducible system for RNAi-based gene silencing is a good candidate for use both in basic research on gene function and for potential therapeutic applications

    Conditional expression of retrovirally delivered anti-MYCN shRNA as an in vitro model system to study neuronal differentiation in MYCN-amplified neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a childhood cancer derived from immature cells of the sympathetic nervous system. The disease is clinically heterogeneous, ranging from neuronal differentiated benign ganglioneuromas to aggressive metastatic tumours with poor prognosis. Amplification of the MYCN oncogene is a well established poor prognostic factor found in up to 40% of high risk neuroblastomas.</p> <p>Using neuroblastoma cell lines to study neuronal differentiation <it>in vitro </it>is now well established. Several protocols, including exposure to various agents and growth factors, will differentiate neuroblastoma cell lines into neuron-like cells. These cells are characterized by a neuronal morphology with long extensively branched neurites and expression of several neurospecific markers.</p> <p>Results</p> <p>In this study we use retrovirally delivered inducible short-hairpin RNA (shRNA) modules to knock down <it>MYCN </it>expression in <it>MYCN</it>-amplified (MNA) neuroblastoma cell lines. By addition of the inducer doxycycline, we show that the Kelly and SK-N-BE(2) neuroblastoma cell lines efficiently differentiate into neuron-like cells with an extensive network of neurites. These cells are further characterized by increased expression of the neuronal differentiation markers <it>NFL </it>and <it>GAP43</it>. In addition, we show that induced expression of retrovirally delivered anti-<it>MYCN </it>shRNA inhibits cell proliferation by increasing the fraction of MNA neuroblastoma cells in the G1 phase of the cell cycle and that the clonogenic growth potential of these cells was also dramatically reduced.</p> <p>Conclusion</p> <p>We have developed an efficient <it>MYCN</it>-knockdown <it>in vitro </it>model system to study neuronal differentiation in MNA neuroblastomas.</p

    Global Gene Expression Profiling of Human Osteosarcomas Reveals Metastasis-Associated Chemokine Pattern

    Get PDF
    Global gene expression analysis was performed on a panel of 23 osteosarcoma samples of primary and metastatic origin using the Applied Biosystems Gene Expression Array System. When comparing the primary tumours with the metastases, we found a significantly increased expression of genes involved in immunological processes, for example coding for cytokines and chemokines, in the metastatic samples. In addition, a comparison of the gene expression in primary samples from patients with or without metastases demonstrated that patients who later developed metastases had high expression of the chemokine (C-X-C motif) receptor 4 (CXCR4), similar to the metastatic samples, suggesting that these signal molecules play an important role in promoting metastasis. Increased knowledge of mechanisms and interactions between specified molecular signalling pathways in osteosarcomas could lead to a more rational strategy for development of targeted therapy

    Do inattention and hyperactivity symptoms equal scholastic impairment? evidence from three European cohorts

    Get PDF
    Background Attention Deficit/Hyperactivity Disorder (ADHD) affects many children, adolescents, and adults and is associated with a number of impairments. Poor academic performance is related to ADHD in clinical samples. However, it is unclear to what extent core ADHD symptoms and scholastic impairment are related in non-referred school-aged children. Methods Data come from three population-based cohorts from Sweden, Denmark, and Finland, which are part of the Nordic Network on ADHD. The combined sample size was 13,087 children who were studied at ages 7–8 or 10–12 years. Teachers rated children on inattention and hyperactivity symptoms and reported children's scholastic performance on basic skills. Results There was a significant association in all cohorts between core ADHD symptoms and scholastic impairment in reading, writing, and mathematics. Particularly, inattention was related to a two to tenfold increase in scholastic impairment. Prevalence of hyperactivity symptoms was similar across the three cohorts, but inattention was lowest among children from the Finnish cohort, after stratification on living conditions. Conclusion These results extend previous reports of scholastic impairment among children with clinically diagnosed ADHD to non-referred population samples from three European countries. Surveillance policies should be implemented in school systems to catch children in need of behavioral or scholastic support early

    Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells

    Get PDF
    Background The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein. Methods To identify pathways that are affected by sarcoma-associated variants of HMGA2, we have over-expressed wild type and truncated HMGA2 protein in an immortalized mesenchymal stem-like cell (MSC) line, and investigated the localisation of these proteins and their effects on differentiation and gene expression patterns. Results Over-expression of both transgenes blocked adipogenic differentiation of these cells, and microarray analysis revealed clear changes in gene expression patterns, more pronounced for the truncated protein. Most of the genes that showed altered expression in the HMGA2-overexpressing cells fell into the group of NF-κB-target genes, suggesting a central role for HMGA2 in this pathway. Of particular interest was the pronounced up-regulation of SSX1, already implicated in mesenchymal oncogenesis and stem cell functions, only in cells expressing the truncated protein. Furthermore, over-expression of both HMGA2 forms was associated with a strong repression of the epithelial marker CD24, consistent with the reported low level of CD24 in cancer stem cells. Conclusions We conclude that the c-terminal part of HMGA2 has important functions at least in mesenchymal cells, and the changes in gene expression resulting from overexpressing a protein lacking this domain may add to the malignant potential of sarcomas

    MYCN-regulated miRNAs Inhibit Secretion of the Tumor Suppressor DICKKOPF-3 (DKK3) in Neuroblastoma

    Get PDF
    The MYCN oncogene is frequently amplified in neuroblastoma. It is one of the most consistent markers of a bad prognosis for this disease. Dickkopf-3 (DKK3) is a secreted protein of the Dickkopf family of Wnt regulators. It functions as a tumor suppressor in a range of cancers, including neuroblastoma. MYCN was recently found to downregulate DKK3 mRNA. In this study, we show that MYCN knockdown in MYCN-amplified (MNA) neuroblastoma cell lines increases secretion of endogenous DKK3 to the culture media. MiRNAs are ~20-nt-long RNAs encoded by the genome that downregulate mRNAs by targeting the 3`untranslated region (3’UTR). Many miRNAs regulate genes involved in the pathogenesis of cancer and are extensively deregulated in different tumors. Using miRNA target prediction software, we found several MYCN-regulated miRNAs that could target the 3’UTR sequence of DKK3, including mir-92a, mir-92b and let-7e. Luciferase expression from a reporter vector containing the DKK3-3`UTR was decreased when this construct was cotransfected with mir-92a, mir-92b and let-7e in HEK293 cells. Mutation of the mir-92 seed sequence in the 3’UTR completely rescued the observed decrease in reporter expression when cotransfected with mir-92a and mir-92b. Antagomir and miRNA-mimic transfections in neuroblastoma cell lines confirmed that DKK3 secretion to the culture media is regulated by these miRNAs. Consistent with reports from other cancers, we found DKK3 to be expressed in the endothelium of primary neuroblastoma samples and to be absent in tumors with MYCN amplification. These data demonstrate a previously unknown tumor promoting mechanism for MYCN-regulated miRNAs
    corecore