12 research outputs found

    Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury

    No full text
    The main function of the lungs is oxygen transport from the atmosphere into the blood circulation, while it is necessary to keep the pulmonary tissue relatively free of pathogens. This is a difficult task because the respiratory system is constantly exposed to harmful substances entering the lungs by inhalation or via the blood stream. Individual types of lung cells are equipped with the mechanisms that maintain pulmonary homeostasis. Because of the clinical significance of acute respiratory distress syndrome (ARDS) the article refers to the physiological role of alveolar epithelial cells type I and II, endothelial cells, alveolar macrophages, and fibroblasts. However, all these cells can be damaged by lipopolysaccharide (LPS) which can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local and systemic inflammation and toxicity. We also highlight a negative effect of LPS on lung cells related to alveolar-capillary barrier and their response to LPS exposure. Additionally, we describe the molecular mechanism of LPS signal transduction pathway in lung cells

    Characterization of the σ<sup>E</sup>-dependent <i>rpoEp3</i> promoter of <i>Salmonella enteric</i> serovar Typhimurium

    No full text
    Using a two-plasmid system, we recently identified σ&lt;sup&gt;E&lt;/sup&gt;-dependent promoters directing expression of the σ&lt;sup&gt;E&lt;/sup&gt; regulon genes in &lt;i&gt;Salmonella enteric&lt;/i&gt; serovar Typhimurium (&lt;i&gt;S&lt;/i&gt;. Typhimurium). Comparison of the promoters revealed a consensus sequence almost identical to the σ&lt;sup&gt;E&lt;/sup&gt;-dependent &lt;i&gt;rpoEp3&lt;/i&gt; promoter directing expression of &lt;i&gt;rpoE&lt;/i&gt;. This two-plasmid system was previously optimized to identify nucleotides critical for the &lt;i&gt;rpoEp3&lt;/i&gt; promoter activity. However, two highly conserved nucleotides in the σ&lt;sup&gt;E&lt;/sup&gt; consensus sequence were not identified by this screening. In the present study, we have improved the two-plasmid screening system using a new optimized error-prone PCR mutagenesis. Together with site-directed mutagenesis, we further identified nucleotides critical for activity of the &lt;i&gt;rpoEp3&lt;/i&gt; promoter and quantified the effect of the particular mutation upon promoter activity. All the identified critical nucleotides of the &lt;i&gt;rpoEp3&lt;/i&gt; promoter (in capital) were located in the −35 (ggAACtt) and −10 (gTCtaA) regions and corresponded to the most conserved nucleotides in the σ&lt;sup&gt;E&lt;/sup&gt; consensus sequence. The expression of the wild-type and mutated &lt;i&gt;rpoEp3&lt;/i&gt; promoters was confirmed in &lt;i&gt;S&lt;/i&gt;. Typhimurium and was found to exhibit a different pattern of σ&lt;sup&gt;E&lt;/sup&gt; activation compared with &lt;i&gt;Escherichia coli&lt;/i&gt;, with a peak &lt;i&gt;rpoEp3&lt;/i&gt; promoter activity in early stationary phase followed by a decrease in late stationary phase

    Short-Term versus Long-Term Culture of A549 Cells for Evaluating the Effects of Lipopolysaccharide on Oxidative Stress, Surfactant Proteins and Cathelicidin LL-37

    No full text
    Alveolar epithelial type II (ATII) cells and their proper function are essential for maintaining lung integrity and homeostasis. However, they can be damaged by lipopolysaccharide (LPS) during Gram-negative bacterial infection. Thus, this study evaluated and compared the effects of LPS on short and long-term cultures of A549 cells by determining the cell viability, levels of oxidative stress and antimicrobial peptide cathelicidin LL-37 and changes in the expression of surfactant proteins (SPs). Moreover, we compared A549 cell response to LPS in the presence of different serum concentrations. Additionally, the effect of N-acetylcysteine (NAC) on LPS-induced oxidative stress as a possible treatment was determined. Our results indicate that A549 cells are relatively resistant to LPS and able to maintain integrity even at high LPS concentrations. Their response to endotoxin is partially dependent on serum concentration. NAC failed to lower LPS-induced oxidative stress in A549 cells. Finally, LPS modulates SP gene expression in A549 cells in a time dependent manner and differences between short and long-term cultures were present. Our results support the idea that long-term cultivation of A549 cells could promote a more ATII-like phenotype and thus could be a more suitable model for ATII cells, especially for in vitro studies dealing with surfactant production

    Induced Pluripotency: A Powerful Tool for In Vitro Modeling

    No full text
    One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population

    The Biocompatibility of Wireless Power Charging System on Human Neural Cells

    No full text
    The progress in technology and science leads to the invention and use of many electrical devices in the daily lives of humans. In addition to that, people have been easily exposed to increased newly generated artificial electromagnetic waves. Exponential use of modern electronic devices has automatically led to increase in electromagnetic wave exposure. Therefore, we constructed the prototype of wireless power charging system to study the biocompatibility of electromagnetic field (EMF) generated by this system on various human cell lines. There are many studies indicating the negative bio-effect of EMF on various types of cells, such as induction of apoptosis. From the other point of view, these effects could rather be beneficial in the way, that they could eliminate the progress of various diseases or disorders. For that reason, we compared the impact of EMF (87 kHz, 0.3–1.2 mT, 30 min) on human normal as well as cancer cell lines based on morphological and cellular level. Our results suggested that EMF generated by wireless power charging systems does not have any detrimental effect on cell morphology, viability and cytoskeletal structures of human neural cells

    The periplasmic chaperone Skp is required for successful Salmonella Typhimurium infection in a murine typhoid model

    No full text
    The alternative sigma factor (YE (rpoE) is essential for survival in vivo of Salmonella Typhimurium but is dispensable during growth in the laboratory. We have been identifying sigma(E)-regulated genes and studying their regulation and function to elucidate their potential role in the severe attenuation of S. Typhimurium rpoE mutants. In this study we identify five promoters that control the rseP, yaeT (bamA), skp region. A confirmed sigma(E)-dependent promoter, yaeTp1, and a second downstream promoter, yaeTp2, are located within the upstream gene rseP and direct expression of the downstream genes. The only known function of RseP is sigma(E) activation, and it is therefore not expected to be essential for S. Typhimurium in vitro. However, it proved impossible to delete the entire rseP gene due to the presence of internal promoters that regulate the essential gene yae T. We could inactivate rseP by deleting the first third of the gene, leaving the yaeT promoters intact. Like the rpoE mutant, the rseP mutant exhibited severe attenuation in vivo. We were able to delete the entire coding sequence of skp, which encodes a periplasmic chaperone involved in targeting misfolded outer-membrane proteins to the beta-barrel assembly machinery. The skp mutant was attenuated in mice after oral and parenteral infection. Virulence could be complemented by providing skp in trans but only by linking it to a heterologous sigma(E)-regulated promoter. The reason the skp mutant is attenuated is currently enigmatic, but we know it is not through increased sensitivity to a variety of RpoE-activating host stresses, such as H2O2, polymyxin B and high temperature, or through altered secretion of effector proteins by either the Salmonella pathogenicity island (SPI)-1 or the SPI-2 type Ill secretion syste

    The Effect of Modified Porcine Surfactant Alone or in Combination with Polymyxin B on Lung Homeostasis in LPS-Challenged and Mechanically Ventilated Adult Rats

    No full text
    The study aimed to prove the hypothesis that exogenous surfactant and an antibiotic polymyxin B (PxB) can more effectively reduce lipopolysaccharide (LPS)-induced acute lung injury (ALI) than surfactant treatment alone, and to evaluate the effect of this treatment on the gene expression of surfactant proteins (SPs). Anesthetized rats were intratracheally instilled with different doses of LPS to induce ALI. Animals with LPS 500 μg/kg have been treated with exogenous surfactant (poractant alfa, Curosurf®, 50 mg PL/kg b.w.) or surfactant with PxB 1% w.w. (PSUR + PxB) and mechanically ventilated for 5 hrs. LPS at 500 μg/kg increased lung edema, oxidative stress, and the levels of proinflammatory mediators in lung tissue and bronchoalveolar lavage fluid (BALF). PSUR reduced lung edema and oxidative stress in the lungs and IL-6 in BALF. This effect was further potentiated by PxB added to PSUR. Exogenous surfactant enhanced the gene expression of SP-A, SP-B, and SP-C, however, gene expression for all SPs was reduced after treatment with PSUR + PxB. In mechanically ventilated rats with LPS-induced ALI, the positive effect of exogenous surfactant on inflammation and oxidative stress was potentiated with PxB. Due to the tendency for reduced SPs gene expression after surfactant/PxB treatment topical use of PxB should be considered with caution

    Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cells

    No full text
    Abstract In recent decades, we have seen significant technical progress in the modern world, leading to the widespread use of telecommunications systems, electrical appliances, and wireless technologies. These devices generate electromagnetic radiation (EMR) and electromagnetic fields (EMF) most often in the extremely low frequency or radio-frequency range. Therefore, they were included in the group of environmental risk factors that affect the human body and health on a daily basis. In this study, we tested the effect of exposure EMF generated by a new prototype wireless charging system on four human cell lines (normal cell lines—HDFa, NHA; tumor cell lines—SH-SY5Y, T98G). We tested different operating parameters of the wireless power transfer (WPT) device (87–207 kHz, 1.01–1.05 kW, 1.3–1.7 mT) at different exposure times (pulsed 6 × 10 min; continuous 1 × 60 min). We observed the effect of EMF on cell morphology and cytoskeletal changes, cell viability and mitotic activity, cytotoxicity, genotoxicity, and oxidative stress. The results of our study did not show any negative effect of the generated EMF on either normal cells or tumor cell lines. However, in order to be able to estimate the risk, further population and epidemiological studies are needed, which would reveal the clinical consequences of EMF impact

    Small outer-membrane lipoprotein, SmpA, is regulated by oE and has a role in cell envelope integrity and virulence of Salmonella enterica serovar Typhimurium

    No full text
    SmpA is a small outer-membrane lipoprotein that is a component of the essential YaeT outer-membrane protein assembly complex. In Salmonella enterica serovar Typhimurium (S. Typhimurium), expression of the smpA gene was shown to be directed by two promoters, smpAp1 and smpAp2. The more distal promoter, smpAp1, is dependent upon the extracytoplasmic stress response sigma factor sigma(E). An smpA null mutant was constructed in S. Typhimurium SL1344 and was shown to be more sensitive than its wild-type parent to growth at high temperature and in the presence of sodium cholate, SDS plus EDTA, and the hydrophobic antibiotic rifampicin. The lack of SmpA in S. Typhimurium elicits a sigma(E)-dependent stress response. These findings are indicative of altered outer-membrane integrity in the smpA mutant, probably due to a defect in outer-membrane protein biogenesis. SmpA was not important for entry or survival within murine macrophages; however, the S. Typhimurium smpA mutant was attenuated in mice by both the oral and parenteral routes of infection, and SmpA appeared to be most important for the growth of S. Typhimurium at systemic sites
    corecore