64 research outputs found

    Integrating the Ecosystem Services Framework to Define Dysbiosis of the Breastfed Infant Gut: The Role of B. infantis and Human Milk Oligosaccharides

    Get PDF
    Mounting evidence supports a connection between the composition of the infant gut microbiome and long-term health. In fact, aberrant microbiome compositions during key developmental windows in early life are associated with increased disease risk; therefore, making pertinent modifications to the microbiome during infancy offers significant promise to improve human health. There is growing support for integrating the concept of ecosystem services (the provision of benefits from ecosystems to humans) in linking specific microbiome functions to human well-being. This framework is widely applied in conservation efforts of macro-ecosystems and offers a systematic approach to guide restoration actions aimed to recover critical ecological functions. The aim of this work is to apply the ecosystem services framework to integrate recent studies demonstrating stable alteration of the gut microbiome of breastfed infants when Bifidobacterium longum subsp. infantis EVC001, a gut symbiont capable of efficiently utilizing human milk oligosaccharides into organic acids that are beneficial for the infant and lower intestinal pH, is reintroduced. Additionally, using examples from the literature we illustrate how the absence of B. infantis results in diminished ecosystem services, which may be associated with health consequences related to immune and metabolic disorders. Finally, we propose a model by which infant gut dysbiosis can be defined as a reduction in ecosystem services supplied to the host by the gut microbiome rather than merely changes in diversity or taxonomic composition. Given the increased interest in targeted microbiome modification therapies to decrease acute and chronic disease risk, the model presented here provides a framework to assess the effectiveness of such strategies from a host-centered perspective

    Use of UV Treated Milk Powder to Increase Vaccine Efficacy in the Elderly

    Get PDF
    Aging populations experience a decline in adaptive immune system function also known as immunosenesence. Protein nutrition has been shown to stimulate and strengthen the immune system, and such approaches are needed for this growing segment of the population. A controlled, randomized, double blind pilot study was conducted to compare two different protein sources (soy and dairy) as nutritional supplementation to enhance vaccine response. Our objective was to examine the immune stimulating effects of dairy protein subjected to ultraviolet radiation (UV-C) radiation treatment process instead of pasteurization. Participants were 21 healthy individuals over 60 years of age who consumed 6 g of the dairy protein or a comparison, soy isoflavone protein, twice a day for 8 weeks. DTaP vaccine administered at week 4. Non-parametric t-tests revealed a significant increase in Tetanus antibodies in the dairy group compared to the soy group at week 8. These findings suggest additional benefits of UV-C treated unheated dairy protein as a solution to counteract immunosenescence, but warrant further study in elderly and other populations that might benefit from immune system stimulation

    TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection

    Get PDF
    Toll-like receptors (TLRs) play a crucial role in innate immunity and provide a first line of host defense against invading pathogens. Of the identified human TLRs, TLR10 remains an orphan receptor whose ligands and functions are poorly understood. In the present study, we sought to evaluate the level of TLR10 expression in breast milk (BM) and explore its potential function in the context of HIV-1 infection. We evaluated HIV-1-infected (Nigerian: n = 40) and uninfected (Nigerian: n = 27; Canadian: n = 15) BM samples for TLR expression (i.e., TLR10, TLR2, and TLR1) and report here that HIV-1-infected BM from Nigerian women showed significantly higher levels of TLR10, TLR1, and TLR2 expression. Moreover, the level of TLR10 expression in HIV-1-infected BM was upregulated by over 100-fold compared to that from uninfected control women. In vitro studies using TZMbl cells demonstrated that TLR10 overexpression contributes to higher HIV-1 infection and proviral DNA integration. Conversely, TLR10 inhibition significantly decreased HIV-1 infection. Notably, HIV-1 gp41 was recognized as a TLR10 ligand, leading to the induction of IL-8 and NF-κBα activation. The identification of a TLR10 ligand and its involvement in HIV-1 infection enhances our current understanding of HIV-1 replication and may assist in the development of improved future therapeutic strategies

    Bovine Colostrum and Its Potential for Human Health and Nutrition

    Get PDF
    Colostrum is the first milk produced post-partum by mammals and is compositionally distinct from mature milk. Bovine colostrum has a long history of consumption by humans, and there have been a number of studies investigating its potential for applications in human nutrition and health. Extensive characterization of the constituent fractions has identified a wealth of potentially bioactive molecules, their potential for shaping neonatal development, and the potential for their application beyond the neonatal period. Proteins, fats, glycans, minerals, and vitamins are abundant in colostrum, and advances in dairy processing technologies have enabled the advancement of bovine colostrum from relative limitations of a fresh and unprocessed food to a variety of potential applications. In these forms, clinical studies have examined bovine colostrumas having the substantial potential to improve human health. This review discusses the macro-and micronutrient composition of colostrum as well as describing well-characterized bioactives found in bovine colostrum and their potential for human health. Current gaps in knowledge are also identified and future directions are considered in order to elevate the potential for bovine colostrum as a component of a healthy diet for a variety of relevant human populations

    Comparative Genome Analysis of Bifidobacterium longum subsp. infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes among Commercial Probiotics

    Get PDF
    Dysbiosis is associated with acute and long-term consequences for neonates. Probiotics can be effective in limiting the growth of bacteria associated with dysbiosis and promoting the healthy development of the infant microbiome. Given its adaptation to the infant gut, and promising data from animal and in vitro models, Bifidobacterium longum subsp. infantis is an attractive candidate for use in infant probiotics. However, strain-level differences in the ability of commercialized strains to utilize human milk oligosaccharides (HMOs) may have implications in the performance of strains in the infant gut. In this study, we characterized twelve B. infantis probiotic strains and identified two main variants in one of the HMO utilization gene clusters. Some strains possessed the full repertoire of HMO utilization genes (H5-positive strains), while H5-negative strains lack an ABC-type transporter known to bind core HMO structures. H5-positive strains achieved significantly superior growth on lacto-N-tetraose and lacto-N-neotetraose. In vitro, H5-positive strains had a significant fitness advantage over H5-negative strains, which was also observed in vivo in breastfed infants. This work provides evidence of the functional implications of genetic dierences among B. infantis strains and highlights that genotype and HMO utilization phenotype should be considered when selecting a strain for probiotic use in infants

    Immobilization of a Bifidobacterial Endo-\u3ci\u3eß-N\u3c/i\u3e-Acetylglucosaminidase to Generate Bioactive Compounds for Food Industry

    Get PDF
    Conjugated N-glycans are considered next-generation bioactive prebiotic compounds due to their selective stimulation of beneficial microbes. These compounds are glycosidically attached to proteins through N-acetylglucosamines via specific asparagine residue (AsN-X-Ser/Thr). Certain bacteria such as Bifidobacterium longum subspecies infantis (B. infantis) have been shown to be capable of utilizing conjugated N-glycans, owing to their specialized genomic abilities. B. infantis possess a unique enzyme, Endo-ß-N-acetylglucosaminidase (EndoBI-1), which cleaves all types of conjugated N-glycans from glycoproteins. In this study, recombinantly cloned EndoBI- 1 enzyme activity was investigated using various immobilization methods: 1) adsorption, 2) entrapment-based alginate immobilization, 3) SulfoLink-, and 4) AminoLink-based covalent bonding immobilization techniques were compared to develop the optimum application of EndoBI-1 to food processes. The yield of enzyme immobilization and the activity of each immobilized enzyme by different approaches were investigated. The N-glycans released from lactoperoxidase (LPO) using different immobilized enzyme forms were characterized using MALDI-TOF mass spectrometry (MS). As expected, regardless of the techniques, the enzyme activity decreased after the immobilization methods. The enzyme activity of adsorption and entrapment-based alginate immobilization was found to be 71.55% ± 0.6 and 20.32% ± 3.18, respectively, whereas the activity of AminoLink- and SulfoLink-based covalent bonding immobilization was found to be 58.05 ± 1.98 and 47.49% ± 0.30 compared to the free form of the enzyme, respectively. However, extended incubation time recovery achieved activity similar to that of the free form. More importantly, each immobilization method resulted in the same glycan profile containing 11 different N-glycan structures from a model glycoprotein LPO based on MALDI-TOF MS analysis. The glycan data analysis suggests that immobilization of EndoBI-1 is not affecting the enzyme specificity, which enables full glycan release without a limitation. Hence, different immobilization methods investigated in this study can be chosen for effective enzyme immobilization to obtain bioactive glycans. These findings highlight that further optimization of these methods can be a promising approach for future processing scale-up and commercialization of EndoBI- 1 and similar enzymes

    Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of \u3ci\u3eBifidobacterium\u3c/i\u3e over the Past Century

    Get PDF
    Historically, Bifidobacterium species were reported as abundant in the breastfed infant gut. However, recent studies in resource-rich countries show an increased abundance of taxa regarded as signatures of dysbiosis. It is unclear whether these differences are the product of genetics, geographic factors, or interventions such as formula feeding, antibiotics, and caesarean section. Fecal pH is strongly associated with Bifidobacterium abundance; thus, pH could be an indicator of its historical abundance. A review of 14 clinical studies published between 1926 and 2017, representing more than 312 healthy breastfed infants, demonstrated a change in fecal pH from 5.0 to 6.5 (adjusted r2 = 0.61). This trend of increasing infant fecal pH over the past century is consistent with current reported discrepancies in Bifidobacterium species abundance in the gut microbiome in resource-rich countries compared to that in historical reports. Our analysis showed that increased fecal pH and abundance of members of the families Enterobacteriaceae, Clostridiaceae, Peptostreptococcaceae, and Veillonellaceae are associated, indicating that loss of highly specialized Bifidobacterium species may result in dysbiosis, the implications of which are not yet fully elucidated. Critical assessment of interventions that restore this ecosystem, measured by key parameters such as ecosystem productivity, gut function, and long-term health, are necessary to understand the magnitude of this change in human biology over the past century

    Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States

    Get PDF
    The gut microbiome plays an important role in early life, protecting newborns from enteric pathogens, promoting immune system development and providing key functions to the infant host. Currently, there are limited data to broadly assess the status of the US healthy infant gut microbiome. To address this gap, we performed a multi-state metagenomic survey and found high levels of bacteria associated with enteric inflammation (e.g. Escherichia, Klebsiella), antibiotic resistance genes, and signatures of dysbiosis, independent of location, age, and diet. Bifidobacterium were less abundant than generally expected and the species identified, including B. breve, B. longum and B. bifidum, had limited genetic capacity to metabolize human milk oligosaccharides (HMOs), while B. infantis strains with a complete capacity for HMOs utilization were found to be exceptionally rare. Considering microbiome composition and functional capacity, this survey revealed a previously unappreciated dysbiosis that is widespread in the contemporary US infant gut microbiome
    corecore