5 research outputs found

    First-time synthesis of a magnetoelectric core-shell composite via conventional solid-state reaction

    Get PDF
    In recent years, multiferroics and magnetoelectrics have demonstrated their potential for a variety of applications. However, no magnetoelectric material has been translated to a real application yet. Here, we report for the first time that a magnetoelectric core–shell ceramic, is synthesized via a conventional solid-state reaction, where core–shell grains form during a single sintering step. The core consists of ferrimagnetic CoFe2O4CoFe_{2}O_{4}, which is surrounded by a ferroelectric shell consisting of (BiFeO3)x(Bi1/2K1/2TiO3)1x(BiFeO_{3})_{x}–(Bi_{1/2}K_{1/2}TiO_{3})_{1−x}. We establish the core–shell nature of these grains by transmission-electron microscopy (TEM) and find an epitaxial crystallographic relation between core and shell, with a lattice mismatch of 6 ± 0.7%. The core–shell grains exhibit exceptional magnetoelectric coupling effects that we attribute to the epitaxial connection between the magnetic and ferroelectric phase, which also leads to magnetic exchange coupling as demonstrated by neutron diffraction. Apparently, ferrimagnetic CoFe2O4CoFe_{2}O_{4} cores undergo a non-centrosymmetric distortion of the crystal structure upon epitaxial strain from the shell, which leads to simultaneous ferrimagnetism and piezoelectricity. We conclude that in situ core–shell ceramics offer a number of advantages over other magnetoelectric composites, such as lower leakage current, higher density and absence of substrate clamping effects. At the same time, the material is predestined for application, since its preparation is cost-effective and only requires a single sintering step. This discovery adds a promising new perspective for the application of magnetoelectric materials

    Shock-induced formation of wüstite and fayalite in a magnetite-quartz target rock

    Get PDF
    Projectile–target interactions as a result of a large bolide impact are important issues, as abundant extraterrestrial material has been delivered to the Earth throughout its history. Here, we report results of shock-recovery experiments with a magnetite-quartz target rock positioned in an ARMCO iron container. Petrography, synchrotron-assisted X-ray powder diffraction, and micro-chemical analysis confirm the appearance of wüstite, fayalite, and iron in targets subjected to 30 GPa. The newly formed mineral phases occur along shock veins and melt pockets within the magnetite-quartz aggregates, as well as along intergranular fractures. We suggest that iron melt formed locally at the contact between ARMCO container and target, and intruded the sample causing melt corrosion at the rims of intensely fractured magnetite and quartz. The strongly reducing iron melt, in the form of μm-sized droplets, caused mainly a diffusion rim of wüstite with minor melt corrosion around magnetite. In contact with quartz, iron reacted to form an iron-enriched silicate melt, from which fayalite crystallized rapidly as dendritic grains. The temperatures required for these transformations are estimated between 1200 and 1600 °C, indicating extreme local temperature spikes during the 30 GPa shock pressure experiments

    The IceCube-Gen2 Collaboration -- Contributions to the 38th International Cosmic Ray Conference (ICRC2023)

    Full text link
    IceCube-Gen2 is a planned next-generation neutrino observatory at the South Pole that builds upon the successful design of IceCube. Integrating two complementary detection technologies for neutrinos, optical and radio Cherenkov emission, in combination with a surface array for cosmic ray air shower detection, IceCube-Gen2 will cover a broad neutrino energy range from MeV to EeV. This index of contributions to the 38th International Cosmic Ray Conference in Nagoya, Japan (July 26 - August 3, 2023) describes research and development efforts for IceCube-Gen2. Included are summaries of the design, status, and sensitivity of the IceCube-Gen2 optical, surface, and radio components; performance studies of next-generation optical sensors detecting optical Cherenkov radiation from cosmic ray and neutrino events; reconstruction techniques of radio and optical events in terms of energy, direction, and neutrino flavor; and sensitivity studies of astrophysical neutrino flavors, diffuse neutrino fluxes, and cosmic ray anisotropies. Contributions related to IceCube and the scheduled IceCube Upgrade are available in a separate collection.Comment: To access the list of contributions, please follow the "HTML" link. Links to individual contributions will fill in as authors upload their materia

    Quellen, Literatur und Software

    No full text
    corecore