4,004 research outputs found

    Hard discs under steady shear: comparison of Brownian dynamics simulations and mode coupling theory

    Full text link
    Brownian dynamics simulations of bidisperse hard discs moving in two dimensions in a given steady and homogeneous shear flow are presented close to and above the glasstransition density. The stationary structure functions and stresses of shear-melted glass are compared quantitatively to parameter-free numerical calculations of monodisperse hard discs using mode coupling theory within the integration through transients framework. Theory qualitatively explains the properties of the yielding glass but quantitatively overestimatesthe shear-driven stresses and structural anisotropies.Comment: 1. The original Phil. Trans. R. Soc. contains an error in the caption of the y-axes of the upper left panel in figure 9: There's a factor \dot{\gamma} missing in the denominato

    Bond formation and slow heterogeneous dynamics in adhesive spheres with long--ranged repulsion: Quantitative test of Mode Coupling Theory

    Full text link
    A colloidal system of spheres interacting with both a deep and narrow attractive potential and a shallow long-ranged barrier exhibits a prepeak in the static structure factor. This peak can be related to an additional mesoscopic length scale of clusters and/or voids in the system. Simulation studies of this system have revealed that it vitrifies upon increasing the attraction into a gel-like solid at intermediate densities. The dynamics at the mesoscopic length scale corresponding to the prepeak represents the slowest mode in the system. Using mode coupling theory with all input directly taken from simulations, we reveal the mechanism for glassy arrest in the system at 40% packing fraction. The effects of the low-q peak and of polydispersity are considered in detail. We demonstrate that the local formation of physical bonds is the process whose slowing down causes arrest. It remains largely unaffected by the large-scale heterogeneities, and sets the clock for the slow cluster mode. Results from mode-coupling theory without adjustable parameters agree semi-quantitatively with the local density correlators but overestimate the lifetime of the mesoscopic structure (voids).Comment: 10 pages, 8 figure

    Local effective dynamics of quantum systems: A generalized approach to work and heat

    Full text link
    By computing the local energy expectation values with respect to some local measurement basis we show that for any quantum system there are two fundamentally different contributions: changes in energy that do not alter the local von Neumann entropy and changes that do. We identify the former as work and the latter as heat. Since our derivation makes no assumptions on the system Hamiltonian or its state, the result is valid even for states arbitrarily far from equilibrium. Examples are discussed ranging from the classical limit to purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density operator do not commute.Comment: 5 pages, 1 figure, published versio

    Predictive Processing in Poetic Language: Event-Related Potentials Data on Rhythmic Omissions in Metered Speech

    Get PDF
    Predictions during language comprehension are currently discussed from many points of view. One area where predictive processing may play a particular role concerns poetic language that is regularized by meter and rhyme, thus allowing strong predictions regarding the timing and stress of individual syllables. While there is growing evidence that these prosodic regularities influence language processing, less is known about the potential influence of prosodic preferences (binary, strong-weak patterns) on neurophysiological processes. To this end, the present electroencephalogram (EEG) study examined whether the predictability of strong and weak syllables within metered speech would differ as a function of meter (trochee vs. iamb). Strong, i.e., accented positions within a foot should be more predictable than weak, i.e., unaccented positions. Our focus was on disyllabic pseudowords that solely differed between trochaic and iambic structure, with trochees providing the preferred foot in German. Methodologically, we focused on the omission Mismatch Negativity (oMMN) that is elicited when an anticipated auditory stimulus is omitted. The resulting electrophysiological brain response is particularly interesting because its elicitation does not depend on a physical stimulus. Omissions in deviant position of a passive oddball paradigm occurred at either first- or second-syllable position of the aforementioned pseudowords, resulting in a 2-by-2 design with the factors foot type and omission position. Analyses focused on the mean oMMN amplitude and latency differences across the four conditions. The result pattern was characterized by an interaction of the effects of foot type and omission position for both amplitudes and latencies. In first position, omissions resulted in larger and earlier oMMNs for trochees than for iambs. In second position, omissions resulted in larger oMMNs for iambs than for trochees, but the oMMN latency did not differ. The results suggest that omissions, particularly in initial position, are modulated by a trochaic preference in German. The preferred strong-weak pattern may have strengthened the prosodic prediction, especially for matching, trochaic stimuli, such that the violation of this prediction led to an earlier and stronger prediction error. Altogether, predictive processing seems to play a particular role in metered speech, especially if the meter is based on the preferred foot type

    Thermodynamics of Blue Phases In Electric Fields

    Full text link
    We present extensive numerical studies to determine the phase diagrams of cubic and hexagonal blue phases in an electric field. We confirm the earlier prediction that hexagonal phases, both 2 and 3 dimensional, are stabilized by a field, but we significantly refine the phase boundaries, which were previously estimated by means of a semi-analytical approximation. In particular, our simulations show that the blue phase I -- blue phase II transition at fixed chirality is largely unaffected by electric field, as observed experimentally.Comment: submitted to Physical Review E, 7 pages (excluding figures), 12 figure

    ECONOMIC IMPACTS OF MANDATED GRADING AND TESTING TO AVOID A NEGATIVE FOOD SAFETY EVENT: EX ANTE ANALYSIS OF THE FEDERAL MARKETING ORDER FOR PISTACHIOS

    Get PDF
    The California pistachio industry led an initiative to establish a federal marketing order, which mandates quality standards and an inspection program to assure food safety and consistency in the quality of California pistachios. We develop a stochastic dynamic simulation model of the pistachio market to investigate quantitatively the likely effects of such collective action enforced by government mandates. Simulation results indicate that, across the full range of parameters used in the analysis, the benefit-cost analysis was always favorable to the proposed policy. The measured benefits to producers, the nation, or the world always well exceeded the corresponding measure of costs, typically by many times.Food Consumption/Nutrition/Food Safety,

    Demand Enhancement through Food-Safety Regulation: Benefit-Cost Analysis of Collective Action in the California Pistachio Industry

    Get PDF
    Food safety shocks can threaten the health of consumers, create havoc within an industry and result in severe losses to producers. Governments often attempt to enhance food safety by mandating standards and inspection of food products to supplement the voluntary efforts by private firms. This paper assesses a form of collective action that falls between typical government mandates and purely private action. The California pistachio industry recently established a U.S. federal marketing order. This order sets quality standards and requires inspection and certification, aiming to reduce the likelihood of dangerous or poor quality pistachios being sold to consumers and to provide some quality assurance to consumers. Simulation results indicate that, across the full range of parameters used in the analysis, the benefit-cost analysis was always favorable to the new policy. Continuing work is extending the analysis to account for some particular features of the pistachio industry, to consider alternative policies, and to draw inferences for the application of similar policies to other California specialty crops.Food Safety, Collective Action, Specialty Crops, Government Regulation, Marketing Orders, Pistachios, Food Consumption/Nutrition/Food Safety, Q18, Q13, I18, H4,
    corecore