703 research outputs found

    Expanding Semiflows on Branched Surfaces and One-Parameter Semigroups of Operators

    Get PDF
    We consider expanding semiflows on branched surfaces. The family of transfer operators associated to the semiflow is a one-parameter semigroup of operators. The transfer operators may also be viewed as an operator-valued function of time and so, in the appropriate norm, we may consider the vector-valued Laplace transform of this function. We obtain a spectral result on these operators and relate this to the spectrum of the generator of this semigroup. Issues of strong continuity of the semigroup are avoided. The main result is the improvement to the machinery associated with studying semiflows as one-parameter semigroups of operators and the study of the smoothness properties of semiflows defined on branched manifolds, without encoding as a suspension semiflow

    High-field AFMR in single-crystalline La_{0.95}Sr_{0.05}MnO_3: Experimental evidence for the existence of a canted magnetic structure

    Full text link
    High-field antiferromagnetic-resonance (AFMR) spectra were obtained in the frequency range 60 GHz < \nu < 700 GHz and for magnetic fields up to 8 T in twin-free single crystals of La_{0.95}Sr_{0.05}MnO_3. At low temperatures two antiferromagnetic modes were detected, which reveal different excitation conditions and magnetic field dependencies. No splitting of these modes was observed for any orientation of the static magnetic field excluding the phase-separation scenario for this composition. Instead, the full data set including the anisotropic magnetization can be well described using a two-sublattice model of a canted antiferromagnetic structure.Comment: 4 pages, 3 figure

    Inhomogeneous Magnetism in La-doped CaMnO3. (II) Mesoscopic Phase Separation due to Lattice-coupled FM Interactions

    Full text link
    A detailed investigation of mesoscopic magnetic and crystallographic phase separation in Ca(1-x)La(x)MnO3, 0.00<=x<=0.20, is reported. Neutron powder diffraction and DC-magnetization techniques have been used to isolate the different roles played by electrons doped into the eg level as a function of their concentration x. The presence of multiple low-temperature magnetic and crystallographic phases within individual polycrystalline samples is argued to be an intrinsic feature of the system that follows from the shifting balance between competing FM and AFM interactions as a function of temperature. FM double-exchange interactions associated with doped eg electrons are favored over competing AFM interactions at higher temperatures, and couple more strongly with the lattice via orbital polarization. These FM interactions thereby play a privileged role, even at low eg electron concentrations, by virtue of structural modifications induced above the AFM transition temperatures.Comment: 8 pages, 7 figure

    Approach to the metal-insulator transition in La(1-x)CaxMnO3 (0<x<.2): magnetic inhomogeneity and spin wave anomaly

    Full text link
    We describe the evolution of the static and dynamic spin correlations of La1−x_{1-x}Cax_xMnO3_3, for x=0.1, 0.125 and 0.2, where the system evolves from the canted magnetic state towards the insulating ferromagnetic state, approaching the metallic transition (x=0.22). In the x=0.1 sample, the observation of two spin wave branches typical of two distinct types of magnetic coupling, and of a modulation in the elastic diffuse scattering characteristic of ferromagnetic inhomogeneities, confirms the static and dynamic inhomogeneous features previously observed at x<<0.1. The anisotropic q-dependence of the intensity of the low-energy spin wave suggests a bidimensionnal character for the static inhomogeneities. At x=0.125, which corresponds to the occurence of a ferromagnetic and insulating state, the two spin wave branches reduce to a single one, but anisotropic. At this concentration, an anomaly appears at {\bf q0_0}=(1.25,1.25,0), that could be related to an underlying periodicity, as arising from (1.5,1.5,0) superstructures. At x=0.2, the spin-wave branch is isotropic. In addition to the anomaly observed at q0_0, extra magnetic excitations are observed at larger q, forming an optical branch. The two dispersion curves suggest an anti-crossing behavior at some {\bf q0_0'} value, which could be explained by a folding due to an underlying perodicity involving four cubic lattice spacings

    Convergence to stable laws for multidimensional stochastic recursions: the case of regular matrices

    Full text link
    Given a sequence (Mn,Qn)n≥1(M_{n},Q_{n})_{n\ge 1} of i.i.d.\ random variables with generic copy (M,Q)∈GL(d,R)×Rd(M,Q) \in GL(d, \R) \times \R^d, we consider the random difference equation (RDE) Rn=MnRn−1+Qn, R_{n}=M_{n}R_{n-1}+Q_{n}, n≥1n\ge 1, and assume the existence of κ>0\kappa >0 such that \lim_{n \to \infty}(\E{\norm{M_1 ... M_n}^\kappa})^{\frac{1}{n}} = 1 . We prove, under suitable assumptions, that the sequence Sn=R1+...+RnS_n = R_1 + ... + R_n, appropriately normalized, converges in law to a multidimensional stable distribution with index κ\kappa. As a by-product, we show that the unique stationary solution RR of the RDE is regularly varying with index κ\kappa, and give a precise description of its tail measure. This extends the prior work http://arxiv.org/abs/1009.1728v3 .Comment: 15 page

    Higher Kac-Moody algebras and moduli spaces of GG-bundles

    No full text
    We provide a generalization to the higher dimensional case of the construction of the current algebra g((z)), of its Kac-Moody extension and of the classical results relating them to the theory of G-bundles over a curve. For a reductive algebraic group G with Lie algebra g, we define a dg-Lie algebra g_n of n-dimensional currents in g. We show that any symmetric G-invariant polynomial P on g of degree n+1 determines a central extension of g_n by the base field k that we call higher Kac-Moody algebra g_{n,P} associated to P. Further, for a smooth, projective variety X of dimension n>1, we show that g_n acts infinitesimally on the derived moduli space RBun_G(X,x) of G-bundles over X trivialized at the formal neighborhood of a point x of X. Finally, for a representation \phi: G-->GL_r, we construct an associated determinantal line bundle on RBun_G(X,x) and prove that the action of g_n extends to an action of g_{n,P_\phi} on such bundle for P_\phi the (n+1)-st Chern character of \phi

    Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting

    Full text link
    Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the development of a liquid-like spatial distribution of magnetic droplets of average size ~10 Angstroms, the concentration of which is proportional to x (one cluster per ~60 doped electrons). In addition, a long-range ordered ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM) structure of the undoped compound, which is a signature of a G-AFM + FM spin-canted state. The possible relationship between cluster formation and the stabilization of a long-range spin-canting for intermediate doping is discussed.Comment: Submitted to Physical Review
    • …
    corecore