107 research outputs found

    Detention and Confessions: The Mallory Case

    Get PDF

    Experimental performance of liquid hydrogen and liquid fluorine in regeneratively cooled rocket engines

    Get PDF
    Performance of liquid hydrogen-fluorine propellant combination in regeneratively cooled rocket engin

    Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes.</p> <p>Methods</p> <p>We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods.</p> <p>Results</p> <p>COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional <it>in vitro </it>models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays <it>in vivo</it>, and do not develop tumorigenic ability.</p> <p>Conclusions</p> <p>We propose that COCA constitutes a good experimental system for <it>in vitro </it>and <it>in vivo </it>skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations.</p

    Modelling the human epidermis in vitro: tools for basic and applied research

    Get PDF
    Culture models of tissues and organs are valuable tools developed by basic research that help investigation of the body functions. Modelling is aimed at simplifying experimental procedures in order to better understand biological phenomena, and consequently, when sufficiently characterized, culture models can also be utilized with high potential in applied research. In skin biology and pathology, the development of cultures of keratinocytes as monolayers has allowed the elucidation of most functional and structural characteristics of the cell type. Beside the multiple great successes that have been obtained with this type of culture, this review draws attention on several neglected characteristics of monolayer cultures. The more sophisticated models created in order to reconstruct the fully differentiated epidermis have followed the monolayers. The epidermal reconstruction produces all typical layers found in vivo and thus makes the model much less simple, but only this kind of model allows the study of full differentiation in keratinocyte and production of the cornified barrier. In addition to its interest in basic research, the reconstructed epidermis is currently gaining a lot of interest for applied research, particularly as an alternative to laboratory animals in the chemical and cosmetic industry. Today several commercial providers propose reconstructed skin or epidermis, but in vitro assays on these materials are still under development. In order to be beneficial at long term, the validation of assays must be performed on a material whose availability will not be interrupted. We warn here providers and customers that the longevity of in vitro assays will be guaranteed only if these assays are done with well-described models, prepared according to published procedures, and must consider having a minimum of two independent simultaneous producers of similar material

    Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination

    Full text link

    Use of the rSpaA415 antigen indicates low rates of Erysipelothrix rhusiopathiae infection in farmed cattle from the United States of America and Great Britain

    Get PDF
    Background Clinical cases of Erysipelothrix rhusiopathiae, a zoonotic gram-positive bacterium, have been reported in many ruminant species, including in cattle, deer, moose and muskoxen. Fatal cases have been repeatedly reported in cattle over the years but to date there is only one Japanese study investigating the seroprevalence of this bacterium in cattle using the growth agglutination test (GAT). This technique is subjective, time-consuming, expensive and hazardous compared to modern serological tests such as enzyme-linked immunosorbent assays (ELISA) or the newly developed fluorescent microbead-based immunoassays (FMIA). Results The FMIA based on the surface protein SpaA (rSpaA415) antigen of E. rhusiopathiae developed in this study had an almost perfect agreement with the GAT (k = 0.83) and showed a sensitivity of 89.7% and a specificity of 92.9% when compared to the GAT. Overall, detection rates of E. rhusiopathiae antibody positive samples were 13.8% (51/370) in British herds and 6% (12/200) in US herds. Positive cattle were present in 34.3% (24/70) of the investigated British farms and in 34.7% (8/23) of the US farms with an on-farm prevalence of 7.1 to 100% for the British farms and 8.3–30% for the US farms. Conclusions FMIA is a fast, safe and economic alternative to the GAT for the diagnosis of E. rhusiopathiae in cattle. This work is the first seroprevalence study of E. rhusiopathiae in healthy farmed cattle in Great Britain and the US and revealed that infection occurs at a low level. Further investigations to evaluate risks of zoonotic transmission when handling cattle are needed

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
    corecore