69 research outputs found

    Treating cisplatin-resistant cancer: a systematic analysis of oxaliplatin or paclitaxel salvage chemotherapy

    Get PDF
    Objective: To examine the pre-clinical and clinical evidence for the use of oxaliplatin or paclitaxel salvage chemotherapy in patients with cisplatin-resistant cancer. Methods: Medline was searched for 1) Cell models of acquired resistance reporting cisplatin, oxaliplatin and paclitaxel sensitivities and 2) Clinical trials of single agent oxaliplatin or paclitaxel salvage therapy for cisplatin/carboplatin-resistant ovarian cancer. Results: Oxaliplatin - Oxaliplatin is widely regarded as being active in cisplatin-resistant cancer. In contrast, data in cell models suggests that there is cross-resistance between cisplatin and oxaliplatin in cellular models with resistance levels which reflect clinical resistance (<10 fold). Oxaliplatin as a single agent had a poor response rate in patients with cisplatin-resistant ovarian cancer (8%, n=91). Oxaliplatin performed better in combination with other agents for the treatment of platinum-resistant cancer suggesting that the benefit of oxaliplatin may lie in its more favourable toxicity and ability to be combined with other drugs rather than an underlying activity in cisplatin resistance. Oxaliplatin therefore should not be considered broadly active in cisplatin-resistant cancer. Paclitaxel – Cellular data suggests that paclitaxel is active in cisplatin-resistant cancer. 68.1% of cisplatin-resistant cells were sensitive to paclitaxel. Paclitaxel as a single agent had a response rate of 22% in patients with platinum-resistant ovarian cancer (n = 1918), a significant increase from the response of oxaliplatin (p<0.01). Paclitaxel-resistant cells were also sensitive to cisplatin, suggesting that alternating between agents may be beneficial. Studies of single agent paclitaxel in platinum-resistant ovarian cancer where patients had previously received paclitaxel had an improved response rate of 35.3% n=232 (p<0.01), suggesting that pre-treatment with paclitaxel improves the response of salvage paclitaxel therapy. Conclusions: Cellular models reflect the resistance observed in the clinic as the cross resistant agent oxaliplatin has a lower response rate compared to the non-cross resistant agent paclitaxel in cisplatin-resistant ovarian cancer. Alternating therapy with cisplatin and paclitaxel may therefore lead to an improved response rate in ovarian cancer

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    Merkel cell carcinoma of skin-current controversies and recommendations

    Get PDF
    The review covers the current recommendations for Merkel cell carcinoma (MCC), with detailed discussion of many controversies. The 2010 AJCC staging system is more in-line with other skin malignancies although more complicated to use. The changes in staging system over time make comparison of studies difficult. A wide excision with margins of 2.5–3 cm is generally recommended. Even for primary </= 1 cm, there is a significant risk of nodal and distant metastases and hence sentinel node biopsy should be done if possible; otherwise adjuvant radiotherapy to the primary and nodal region should be given. Difficulties of setting up trials owing to the rarity of the disease and the mean age of the patient population result in infrequent reports of adjuvant or concurrent chemotherapy in the literature. The benefit, if any, is not great from published studies so far. However, there may be a subgroup of patients with high-risk features, e.g. node-positive and excellent performance status, for whom adjuvant or concurrent chemotherapy may be considered. Since local recurrence and metastases generally occur within 2 years of the initial diagnosis, patients should be followed more frequently in the first 2 years. However delayed recurrence can still occur in a small proportion of patients and long-term follow-up by a specialist is recommended provided that the general condition of the patient allows it. In summary, physician judgment in individual cases of MCC is advisable, to balance the risk of recurrence versus the complications of treatment

    Changes in gene expression associated with stable drug and radiation resistance in small cell lung cancer cells are similar to those caused by a single X-ray dose.

    Full text link
    Small cell lung cancer (SCLC) initially responds well to chemotherapy and fractionated radiotherapy, but resistance to these treatments eventually develops in the vast majority of cases. To understand how resistance develops in the H69 SCLC cell line, we compared the changes in gene expression associated with 37.5 Gy fractionated X-ray treatment that produced the stable radiation- and drug-resistant H69/R38 cell subline to the changes associated with a single 4- or 8-Gy X-ray treatment. Gene expression was determined by suppression subtractive hybridization combined with Northern blot analysis and two-dimensional (2D) protein electrophoresis. Stable radiation and drug resistance was associated with coordinate changes in the expression of genes of the cytoskeleton, protein synthesis, cell cycle, redox/stress and metabolic pathways. The pattern of these changes was remarkably similar to the changes seen 24 h after a single X-ray treatment of the H69 cells but differed from the changes in expression associated with a single X-ray treatment of the resistant H69/ R38 cells. Stable radiation and drug resistance may be caused by the constitutive expression of those genes transiently expressed by sensitive cells in response to a single X-ray dose. The repeated treatments received during fractionated irradiation may promote the change from a transient to a constitutive pattern of gene expression

    Asthmatic airway smooth muscle CXCL10 production: Mitogen-activated protein kinase JNK involvement

    Full text link
    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokineinduced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1ββ, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Ik-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-αinduced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-αcombined with IFN-γsynergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Ik-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. © 2012 the American Physiological Society
    corecore