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Abstract

ATP-binding cassette (ABC) transporters make up a superfamily of transmembrane proteins that play a critical role
in the development of drug resistance. This phenomenon is especially important in oncology, where superfamily
member ABCG2 (also called BCRP – breast cancer resistance protein) is known to interact with dozens of anti-
cancer agents that are ABCG2 substrates. In addition to the well-studied and well-reviewed list of cytotoxic and
targeted agents that are substrates for the ABCG2 transporter, a growing body of work links ABCG2 to multiple
photodynamic therapy (PDT) agents, and there is a limited body of evidence suggesting that ABCG2 may also play
a role in resistance to radiation therapy. In addition, the focus of ABC transporter research in regards to therapeutic
development has begun to shift in the past few years. The shift has been away from using pump inhibitors for
reversing resistance, toward the development of therapeutic agents that are poor substrates for these efflux pump
proteins. This approach may result in the development of drug regimens that circumvent ABC transporter-mediated
resistance entirely. Here, it is our intention to review: 1) recent discoveries that further characterize the role of
ABCG2 in oncology, and 2) advances in reversing and circumventing ABC transporter-mediated resistance to anti-
cancer therapies.
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Background
Resistance to anti-cancer therapies is one of the most
studied subjects in modern biomedical research [1, 2].
Though many mechanisms of drug resistance have been
identified in cancer, drug efflux mediated by xenobiotic
transporters is one of the best validated. ATP-binding
cassette (ABC), sub-family G, isoform 2 protein
(ABCG2, also known as breast cancer resistance protein,
BCRP) is a drug efflux pump and an important member
of the ABC transporter superfamily. ABCG2 was identi-
fied independently by three separate groups in 1998 and
1999 [3–5]. In normal tissue, ABCG2 performs a multi-
tude of functions. ABCG2 is expressed at very high
levels in the placenta and protects the developing fetus
from endo- and exotoxins [5]. ABCG2 is also found at
the blood-brain barrier, where it likewise protects the
brain from harmful compounds [6]. ABCG2 also regu-
lates the homeostasis of nutrients and certain hormones.
In the gastrointestinal tract, ABCG2 plays a role in

nutrient absorption [7]. ABCG2 helps to concentrate vi-
tamins and possibly hormones in breast milk [8], and
may regulate testosterone levels in the prostate, as
ABCG2 is expressed in normal prostate basal epithelial
cells [9]. The sebaceous glands, exocrine glands located
in the skin that secrete sebum to lubricate and water-
proof skin and hair, also express very high levels of
ABCG2 [10].

ABCG2 and cancer
Two of the three groups that initially isolated ABCG2
did so while investigating resistance to anti-cancer
agents that had developed in cell culture [3, 4]. Since
ABCG2 was first identified in drug-resistant cancer cells,
it was hypothesized that a variety of cytotoxic agents
were substrates for ABCG2, and that resistance to these
agents was the result of drug efflux by ABCG2 [3, 4].
Though not the focus of this review, we have summa-
rized a portion of the literature in regards to ABCG2
and cytotoxic or targeted therapies (Table 1) [11–16].
Several excellent reviews cover these findings in greater
detail [17–20].
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Multiple in vitro studies have demonstrated that
methotrexate, mitoxantrone, flavopiridol, 5-fluorouracil,
as well as the camptothecin analogues topotecan, irino-
tecan, and SN-38 are all substrates for ABCG2, and high
expression of ABCG2 correlates with decreased intracel-
lular accumulation of these compounds and consequen-
tially a decrease in drug potency [4, 21–27]. A number
of nucleoside analogues in clinical use are also known to
interact with ABCG2 [28]. In addition, gain-of-function
mutations in ABCG2 (R482G and R482T) result in efflux
of anthracyclines [29, 30]. A number of clinical studies

have also observed correlations between high ABCG2
activity and decreased survival [31–33], and links be-
tween failure of a variety of cytotoxic and targeted ther-
apies with ABCG2 activity [34–36]. Most recently, for
example, ABCG2 has been shown to transport rucaparib
[37], a PARP inhibitor under clinical investigation, as
well as limit its oral bioavailability [38].

ABCG2 and photodynamic therapy
Photodynamic therapy (PDT) uses tumor-selective pho-
tosensitizers and subsequent activation by light of a

Table 1 Brief summary of anti-cancer compounds that are ABCG2 substrates

Compound Mechanism of action Note (see below) Reference

Traditional cytotoxics

Mitoxantrone Topoisomerase II poison [4]

Etoposide Topoisomerase II poison [11, 12]

Doxorubicin DNA intercalator; Topo II poison 1 [27, 29]

Daunarubicin DNA intercalator; Topo II poison 1 [27, 29]

Epirubicin DNA intercalator; Topo II poison 1 [29]

Topotecan Topoisomerase I poison [22]

Irinotecan Topoisomerase I poison [27]

SN-38 Topoisomerase I poison 2 [21]

5-fluorouracil Thymidylate synthase inhibitor [26]

Methotrexate Dihydrofolate reductase inhibitor [24]

Cladribine Nucleoside analogue [28]

Clofarabine Nucleoside analogue [28]

6-mercaptopurine Nucleoside analogue [28]

Flavopiridol CDK9 inhibitor [25]

Tyrosine kinase inhibitors

Imatinib Bcr-Abl inhibitor [13, 89]

Dasatinib Bcr-Abl inhibitor 3 [14, 40]

Nilotinib Bcr-Abl inhibitor [14]

Sorafenib Multi-kinase inhibitor 4 [91, 93]

Sunitinib Multi-kinase inhibitor 5 [87, 92]

Gefitinib EGFR inhibitor [15]

Erlotinib EGFR inhibitor [16]

Rucaparib PARP inhibitor 6 [37, 38]

PDT agents

Pheophorbide a Photosensitizer [39]

Chlorin e6 Photosensitizer [41]

HPPH Photosensitizer [42, 43]

5-aminolevulinic acid Photosensitizer [48]

Porfimer sodium Photosensitizer 7 [49]

1, Requires gain-of-function mutation at ABCG2 R482
2, SN-38 is the active metabolite of irinotecan
3, One study suggests ABCG2 expression correlates with poor patient response
4, Phase I/II trial of sorafenib plus irinotecan recently completed
5, Phase III trial of sunitinib plus FOLFIRI found no benefit over FOLFIRI alone
6, ABCG2 also limits rucaparib oral bioavailability
7, ABCG2 correlates with poor response to porfimer sodium in NSCLC patients
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specific wavelength to generate reactive oxygen species.
These species, in turn, damage cancer cells and induce
apoptosis and necrosis. Currently, PDT agents are ap-
proved in the U.S. for the treatment of esophageal can-
cer and non-small cell lung cancer. A number of PDT
agents are known to be substrates of ABCG2. High
ABCG2 expression decreases the intracellular accumula-
tion and in vitro potency of the investigational PDT
agents pheophorbide a [39, 40], pyropheophorbide a me-
thyl ester [41], and chlorin e6 [41]. There is also in vitro
and in vivo evidence that ABCG2 can cause resistance to
a PDT agent currently under clinical investigation, 2-(1-
hexyloxethyl)-2-devinyl pyropheophorbide, commonly
known as HPPH [42, 43]. There is also evidence that
clinically used PDT agents are substrates for ABCG2.
Interest in 5-aminolevulinic acid (ALA) has been grow-
ing in recent years, as ALA is now used as a fluorescent
aid during tumor resection in glioma patients [44] as
well as a photosensitizer for PDT of pre-cancerous ac-
tinic keratosis [45, 46]. Robey et al. initially identified
ALA as a substrate for ABCG2, and recent work by two
other groups has further confirmed their findings [41,
47, 48]. Lastly, Usuda et al. reported that the potency of
porfimer sodium is decreased in response to high
ABCG2 activity [49]. Porfimer sodium is a photosensi-
tizer that is approved by the FDA for the treatment of
esophageal cancer and endobronchial non-small cell
lung cancer lesions. Additionally, Usuda and colleagues
reported that lung cancer patients with localized disease
who expressed high levels of ABCG2 protein responded
worse to porfimer sodium than patients with lower
levels of ABCG2 [49], which further validated ABCG2 as
a clinically-relevant mechanism of resistance in cancer.

ABCG2 and cancer stem cells
ABCG2 has also been implicated in another realm of
cancer that is somewhat separate from treatment re-
sponse: the cancer stem cell (CSC) phenotype. CSCs are
a subset of cancer cells that share properties with “nor-
mal” stem cells: self-renewal and the ability to differenti-
ate into multiple types of cells (reviewed in [50]). CSCs
have been hypothesized to play a role in tumorigenesis,
resistance, recurrence, metastasis, and tumor heterogen-
eity [50–52]. CSCs are often isolated or identified by de-
tection of cell surface markers, including CD44, CD24,
CD133, and others [50, 53], and also by detection of al-
dehyde dehydrogenase activity [54]. However, another
method of isolating CSCs has been through the identifi-
cation of a subpopulation that is able to efflux chemo-
therapeutics or, more commonly, the dye Hoechst
33342, an ABCG2 substrate [55].
The Hoechst 33342 efflux assay was developed by Dr.

Margaret Goodell and colleagues who were attempting
to use the DNA binding dye to measure DNA content in

cycling bone marrow cells [55]. After treating murine
bone marrow cells with Hoechst 33342, the group ex-
cited the cells with an ultraviolet laser and recorded
emission at two wavelengths using a 450/20 nm band
pass filter (the standard filter for evaluating DNA con-
tent using Hoechst 33342) and a 675 nm long pass edge
filter [55]. Simultaneously displaying emission at both
wavelengths allowed the team to identify a population of
cells that was removed from the main body which they
hypothesized was the result of dye efflux mediated by
molecular efflux pumps [55]. This “side population”, as
they called it, contained cells that were enriched for
hematopoietic stem cell markers and were better able to
repopulate the bone marrow of mice after radiation [55].
Several groups were able to later identify ABCG2 as a
key contributor to Hoechst 33342 efflux and an import-
ant side population marker [56–59]. Since then, the
Hoechst 33342 efflux assay has been used to successfully
isolate a number of normal stem-like populations, such
as retinal stem cells [60] and primitive neural cells [61],
as well as CSC-like populations in lung cancer cell lines
[62], head and neck cancer cell lines [63], hepatocellular
carcinoma cell lines [64], a glioma cell line [65], primary
neuroblastoma cultures [66], ovarian cancer cell lines
[67], and in ascites cells from patients with ovarian can-
cer [67].
ABCG2 is often associated with CSCs because of the

presence of ABCG2-positive cells in the side population
identified by dye efflux assays. However, several groups
have concluded that ABCG2 is not a defining feature of
all stem-like populations. For example, ABCG2 defi-
ciency does not prevent normal hematopoietic develop-
ment in mice [56], and CSC populations isolated using
cell surface markers do not always express ABCG2 [68].
Additionally, ABCG2-negative cancer cells are able to
form tumors in breast, prostate, colon, and glioma xeno-
graft models at the same rate as ABCG2-positive cancer
cells [69]. However, a number of reports have identified
two areas of interest where ABCG2 may be functionally
relevant in regards to CSCs and therapeutic response: in
castration-resistant prostate cancer, and in radiation re-
sistant cancer cells.

ABCG2 and hormone-refractory cancers
Some groups have hypothesized that, although not all
CSCs are ABCG2-positive, ABCG2-positive cancer cells
with at least some stem-like qualities become more rele-
vant during the development of treatment resistance. In
addition to resistance to treatment modalities discussed
earlier, this would also allow for resistance to hormone-
based therapies, as ABCG2 has been shown to efflux a
number of androgenic and estrogenic hormone conju-
gates [70–73]. This phenomenon has been studied most
extensively in the prostate cancer, where ABCG2 is
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highly expressed in a small population of stem-like can-
cer cells and is able to regulate the efflux of androgen
[72]. Overexpression of ABCG2 has also been shown to
promote a stem-like phenotype in prostate cells [74].
These cells are believed to be less responsive to andro-
gen, as they do not express detectable levels of the an-
drogen receptor. Further, Gu et al. demonstrated that
androgen receptor-negative prostate CSCs can repopu-
late tumors in animals following serial implantation [75].
Based on this evidence, it has been hypothesized that
this population of androgen-independent cells may be
the progenitor cells that are responsible for the develop-
ment of castration-resistance disease: as androgen
deprivation therapy induces apoptosis in androgen-
dependent cells (reviewed in [76]), the tumor could po-
tentially be repopulated by CSCs that are not reliant on
androgen.

ABCG2 and radiation therapy
Studies have noted that a number of ABC transporters
are often upregulated in cells that are resistant to radi-
ation therapy [77–79]. Conventional wisdom was that
these pumps were not actively radioprotective, but were
instead indicative of the stem-like phenotype common
in radiation resistance populations of cells. However, at
least one group had proposed a functional role for ABC
transporters in radiation resistance as early as 2007, pos-
iting that efflux pump-mediated glutathione modulation
could play a role in radiation resistance [80]. Though
that specific hypothesis has remained largely unstudied,
a small number of reports have emerged that may sug-
gest a functional role for ABC transporters, including
ABCG2, in radiation resistance. In 2009, Ning et al. pub-
lished a report detailing a population of stem-like cells
in the bladder cancer line T24. They reported that this
stem-like population, isolated by Hoechst 33342 efflux
and expressing higher ABCG2 mRNA than unsorted
T24 cells, was resistant to radiation treatment [81]. Intri-
guingly, administration of verapamil, an inhibitor of
ABC transporters as well as an inhibitor of calcium and
potassium transporters, sensitized these cells to radiation
treatment [81]. More recently, Ingram and colleagues re-
ported high ABCG2 expression in medulloblastoma cells
that survived exposure to long-term low-dose radiation
as well as short-term high-dose radiation [82]. They ob-
served a reversal of radioresistance following treatment
with R-verapamil, which has weaker anti-ion channel ac-
tivity compared to S-verapamil, yet retains its ability to
inhibit ABC transporters. Curiously, they did not see re-
versal of radioresistance following treatment with spe-
cific inhibitors of ABCG2, such as Ko143 [82]. The
authors interpreted this as evidence for redundancy of
ABC transporters in regards to transporter-mediated ra-
diation resistance, though they did not rule out residual

anti-ion channel activity [82]. In our view, more studies
are needed before a functional role for ABC transporters
in radioresistance can be conclusively established.

Therapeutic strategies to overcome ABCG2-mediated
resistance
Inhibition of ABCG2 activity
Since the discovery of ABCG2, researchers have been in-
vestigating methods to reverse or circumvent ABCG2-
induced resistance. One attractive possibility was to in-
hibit ABCG2 activity, thereby halting drug efflux. This
strategy initially showed promise in vitro where potent
inhibitors of ABCG2, such as fumitremorgin C, were
able to restore the potency of ABCG2 substrates [83,
84]. However, attempts to translate this strategy to the
clinic have been unsuccessful so far. The first problem
to arise was the toxicity of first-generation ABCG2 in-
hibitors in animal models. Fumitremorgin C, for ex-
ample, causes severe neurotoxicity [85]. Other groups
have reported that less toxic inhibitors of ABCG2, such
as tariquidar, may not result in clinically beneficial in-
creases in drug accumulation [86]. Interestingly, results
from studies using tyrosine kinase inhibitors that also in-
hibit ABCG2 activity are more encouraging.
Many tyrosine kinase inhibitors that are substrates for

ABCG2 are also able to function as competitive inhibi-
tors of ABCG2-mediated efflux of cytotoxics, as the two
drug classes share a common binding site [87, 88]. Like
fumitremorgin C, several tyrosine kinase inhibitors, in-
cluding sunitinib, nilotinib, sorafenib, and imatinib, are
able to sensitize cells with high ABCG2 expression to
cytotoxics which are ABCG2 substrates, including topo-
tecan and SN-38 [89, 90]. Mazard et al. were able to
demonstrate that sorafenib enhanced the intracellular
accumulation of SN-38 and that combination treatment
of sorafenib with irinotecan improved survival of mice
implanted with irinotecan-resistant tumors [91]. How-
ever, clinical trials using tyrosine kinase inhibitors as
ABCG2 inhibitors or in combination with cytotoxic
agents that are ABCG2 substrates have shown mixed
outcomes. A phase III trial of sunitinib in combination
with the FOLFIRI regimen was discontinued due to in-
creased adverse events, including increased drug
toxicity-related deaths, in the sunitinib-treated arm with
no benefit to overall survival [92]. However, a phase I/II
trial of sorafenib in combination with irinotecan in pa-
tients who had previously failed irinotecan-containing
regimens was concluded in 2014 with promising results
[93].

Inhibition of ABCG2 expression as an emerging therapeutic
option
Another proposed strategy in overcoming ABCG2-
mediated resistance to chemotherapeutics was to inhibit
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ABCG2 protein expression. The concept of inhibiting
ABC transporter expression is not new; Hiroyuki
Kobayashi and colleagues first reported on hammerhead
ribozymes that were able to target ABCG2 mRNA in
1994 [94]. More recently, RNA interference (RNAi) has
been used to knock down ABCG2 expression in cell cul-
ture and restore therapeutic benefit to anti-cancer agents
that are ABCG2 substrates [95–98]. While there was
some doubt for a number of years about the practicality
of RNAi translating to clinical use [99, 100], the reports
in the last five years of successful cleavage of targeted se-
quences in humans using nanoparticle delivery of siRNA
particles [101, 102] opens the door for renewed interest
in the potential application of RNAi as a means of dis-
rupting multi-drug resistance mediated by ABC
transporters.
Alternatively, several groups have proposed pharmaco-

logic inhibition of ABCG2 expression as a potential tool
to combat drug resistance. Again, tyrosine kinase inhibi-
tors have been used to demonstrate proof of principle in
vitro. Nakanishi et al. demonstrated that tyrosine kinase
inhibitors that target the PI3K-Akt pathway, such as
LY294002, are able to downregulate ABCG2 expression,
thereby sensitizing cells to therapeutic agents that are
ABCG2 substrates [103]. Other groups have investigated
the use of phosphodiesterase-5 inhibitors for the same
purpose. One phosphodiesterase-5 inhibitor, sildenafil,
has shown promise as an inhibitor of multiple ABC
transporters at clinically achievable levels [104, 105].
One report describes the reversal of methotrexate,
mitoxantrone, and paclitaxel resistance due to sildenafil-
mediated downregulation of ABCG2 and P-gp in breast
cancer cells [106]. Xanthines, such as caffeine and theo-
phylline, are also being investigated for the same pur-
pose and have shown promising results in vitro [107].
Unfortunately, no trials have yet investigated the poten-
tial benefit of this strategy in a clinical setting.

Circumventing ABCG2-mediated resistance by using agents
that are poor substrates
A final and more recent proposed strategy to deal with
ABC transporter-induced resistance to clinically used
agents had been the development of agents that are poor
substrates for efflux pumps. This strategy is having an
immediate impact in the clinic. In 2010, the FDA ap-
proved the use of a novel semi-synthetic taxane deriva-
tive, cabazitaxel, in patients with castration-resistant
prostate cancer who had previously failed docetaxel-
based regimens [108]. Cabazitaxel was originally selected
for clinical testing based in part on its poor affinity for
the drug efflux pump P-glycoprotein 1 (P-gp, also known
as multidrug resistance protein 1 and ABCB1) [108]. In
a randomized open-label phase III trial in patients whose
disease had progressed following docetaxel, cabazitaxel

plus oral prednisone was superior to mitoxantrone plus
oral prednisone in terms of both overall survival and
progression-free survival [109]. Cabazitaxel serves as an
encouraging “proof of concept” that suggests that this
strategy of circumventing resistance using agents that
are poor substrates for drug efflux pumps could be ex-
panded to other ABC transporters, including ABCG2, to
address the increasingly complex issue of drug failure.
Several research groups have attempted to identify

anti-cancer agents that are poor substrates for ABCG2.
As early as 2004, researchers in Japan were attempting
to identify derivatives of camptothecin that were poor
substrates of ABCG2 in the hopes of addressing irinote-
can and topotecan resistance [110]. Other groups in the
United States and Europe followed suit, though only a
small handful of compounds have since been identified
[111–113], and none have yet progressed to clinical tri-
als. Our group recently reported on a novel semi-
synthetic analogue of camptothecin, FL118 (10,11-
methylenedioxy-20(S)-camptothecin), that has strong
anti-cancer activity both in vitro and in vivo [114–116].
FL118 is better able to control tumor growth compared
to both irinotecan and topotecan in a number of xeno-
graft models, and has picomolar EC50 values for growth
inhibition in a number of cell culture models [114, 117].
More recently, we have also reported that FL118 is a
poor substrate for both ABCG2 [118] and P-gp [119].
High expression of ABCG2 and/or P-gp did not result in
FL118 resistance in cell culture, and FL118 was able to
inhibit tumor growth better than irinotecan in xenograft
models that expressed high levels of ABCG2 [118]. Sub-
sequently, we also observed that FL118 could eradicate
xenografts that had acquired resistance to either irinote-
can or topotecan [119]. This suggests that FL118 may be
able to restore therapeutic efficacy in patients who had
originally benefitted from irinotecan or topotecan but
who later stopped responding due to acquired resistance
mediated by drug efflux pumps.
Lastly, researchers who are developing the next gener-

ation of PDT agents have been particularly attracted to
the notion of designing agents that are not susceptible
to efflux by ABC transporters. Although a number of
PDT agents are known substrates of ABCG2, including
clinically used compounds, several groups had previously
noted that affinity for ABCG2 was not a universally
shared characteristic of common PDT drug classes [39,
41]. More recently, one group from Norway reported on
amphiphilic sulfonated photosensitizers that were not
effluxed out of breast cancer cells with high ABCG2 ex-
pression [120]. Specifically, they investigated sulfonated
members of PDT agents in different classes, including
porphines, chlorins, and phtalocyanines, and found that
none of them were effluxed by ABCG2. Furthermore,
another group was able to demonstrate that the potency
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of certain sugar-conjugated analogues of the clinically
investigated HPPH were not affected by ABCG2 [42].
Taken together, these studies suggest that modifications
to already-proven classes of PDT agents may produce
compounds that are both efficacious and insensitive to
ABCG2 activity.

Conclusions
ABCG2 has been linked to treatment failure and de-
creased survival in a number of different cancers. In
addition to the well-known effects of ABCG2 on cyto-
toxics and targeted agents, ABCG2 is also increasingly
linked with failure of PDT, while the role of ABCG2 in
resistance to radiation therapy remains to be further in-
vestigated. ABCG2 has also been linked to cancer cells
that exhibit stem-like properties. As a result, intensive
research efforts have been expended in the search for
options to reverse or circumvent ABCG2-mediated re-
sistance. In the past, most research was dedicated to
identifying pharmacologic agents that would inhibit
ABCG2 activity, with the hypothesis that concomitant
treatment with ABCG2 inhibitors and conventional
chemotherapy would increase treatment efficacy. In re-
cent years, however, we begin to see a transition toward
other strategies. Though none of these ABCG2-specific
efforts have yet resulted in improvements in patient care,
the broader concept of circumventing drug efflux pump-
mediated resistance has led to the development and ap-
proval of cabazitaxel for prostate cancer. Encouragingly,
a number of anti-cancer agents that are not substrates
for ABC transporters are currently in preclinical devel-
opment. FL118, for example, is a unique camptothecin
analogue that is not effluxed by either ABCG2 or P-gp,
and is able to overcome resistance to irinotecan and
topotecan in cancer xenograft models. A number of
other molecules are also currently in preclinical develop-
ment, also with the goal of providing treatment options
to patients who had initially responded to conventional
therapy options but who had developed resistance due
to increased efflux pump activity.
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