879 research outputs found

    Collective spin dynamics in magnetic nanomaterials

    Full text link
    Magnetic nanomaterials are considered, formed by magnetic nanomolecules with high spins. The problem of spin reversal in these materials is analyzed, which is of interest for the possible use of such materials for quantum information processing and quantum computing. The fastest spin reversal can be achieved by coupling the spin sample to a resonant electric circuit and by an appropriate choice of the system parameters. A principal point is to choose these parameters so that to organize coherent spin motion. Dynamics of collective motion is modelled by computer simulations, which confirm the high level of dynamical coherence of molecular spins in the process of spin reversal.Comment: Latex file, 7 pages, 4 figure

    Patient safety in undergraduate radiography curricula : a European perspective

    Get PDF
    Purpose: To establish an understanding of patient safety within radiography education across Europe by surveying higher education institutions registered as affiliate members of the European Federation of Radiographer Societies (EFRS). Method: An online survey was developed to ascertain data on: programme type, patient safety definitions, relevant safety topics, specific areas taught, teaching and assessment methods, levels of teaching and curriculum drivers. Responses were identifiable in terms of educational institution and country. All 54 affiliated educational institutions were invited to participate. Descriptive and thematic analyses are reported. Results: A response rate of 61.1% (n = 33) was achieved from educational institutions representing 19 countries. Patient safety topics appear to be extremely well covered across curricula, however, topics including radiation protection and optimisation were not reported as being taught at an ‘advanced level’ by five and twelve respondents, respectively. Respondents identified the clinical department as the location of most patient safety-related teaching. Conclusions: Patient safety topics are deeply embedded within radiography curricula across Europe. Variations exist in terms of individual safety topics included, teaching and assessment methods, and the depth in which subjects are taught. Results from this study provide a baseline for assessing developments in curricula and can also serve as a benchmark for comparisons

    Textural characterization, major and volatile element quantification and Ar-Ar systematics of spherulites in the Rocche Rosse obsidian flow, Lipari, Aeolian Islands:A temperature continuum growth model.

    Get PDF
    Spherulitic textures in the Rocche Rosse obsidian flow (Lipari, Aeolian Islands, Italy) have been characterized through petrographic, crystal size distribution (CSD) and in situ major and volatile elemental analyses to assess the mode, temperature and timescales of spherulite formation. Bulk glass chemistry and spherulite chemistry analyzed along transects across the spherulite growth front/glass boundary reveal major-oxide and volatile (H2O, CO2, F, Cl and S) chemical variations and heterogeneities at a ≤5 μm scale. Numerous bulk volatile data in non-vesicular glass (spatially removed from spherulitic textures) reveal homogenous distributions of volatile concentrations: H2O (0.089 ± 0.012 wt%), F (950 ± 40 ppm) and Cl (4,100 ± 330 ppm), with CO2 and S consistently below detection limits suggesting either complete degassing of these volatiles or an originally volatile-poor melt. Volatile concentrations across the spherulite boundary and within the spherulitic textures are highly variable. These observations are consistent with diffusive expulsion of volatiles into melt, leaving a volatile-poor rim advancing ahead of anhydrous crystallite growth, which is envisaged to have had a pronounced effect on spherulite crystallization dynamics. Argon concentrations dissolved in the glass and spherulites differ by a factor of ~20, with Ar sequestered preferentially in the glass phase. Petrographic observation, CSD analysis, volatile and Ar data as well as diffusion modeling support continuous spherulite nucleation and growth starting at magmatic (emplacement) temperatures of ~790–825 °C and progressing through the glass transition temperature range (T g ~ 750–620 °C), being further modified in the solid state. We propose that nucleation and growth rate are isothermally constant, but vary between differing stages of spherulite growth with continued cooling from magmatic temperatures, such that there is an evolution from a high to a low rate of crystallization and low to high crystal nucleation. Based on the diffusion of H2O across these temperature ranges (~800–300 °C), timescales of spherulite crystallization occur on a timescale of ~4 days with further modification up to ~400 years (growth is prohibitively slow <400 °C and would become diffusion reliant). Selective deformation of spherulites supports a down-temperature continuum of spherulite formation in the Rocche Rosse obsidian; indeed, petrographic evidence suggests that high-strain zones may have catalyzed progressive nucleation and growth of further generations of spherulites during syn- and post-emplacement cooling

    Neutral Pions with Large Transverse Momentum in d+Au and Au+Au Collisions

    Full text link
    Measurements of transverse-momentum p_T spectra of neutral pions in Au+Au and d+Au collisions at sqrt{s_NN}=200 GeV and 62.4 GeV by the PHENIX experiment at RHIC in comparison to p+p reference spectra at the same sqrt{s_NN} are presented. In central Au+Au collisions at sqrt{s_NN}=200 GeV a factor 4-5 suppression for neutral pions and charged hadrons with p_T > 5 GeV/c is found relative to the p+p reference scaled by the nuclear overlap function . In contrast, such a suppression of high-p_T particles is absent in d+Au collisions independent of the centrality of the collision. To study the sqrt{s_NN} dependence of the suppression Au+Au collisions at sqrt{s_NN}=200 GeV and 62.4 GeV are compared.Comment: 7 pages, 5 figures, presented at Hot Quarks 2004, Taos, N
    • …
    corecore