166 research outputs found

    Geodesic acoustic modes in a fluid model of tokamak plasma : the effects of finite beta and collisionality

    Full text link
    Starting from the Braginskii equations, relevant for the tokamak edge region, a complete set of nonlinear equations for the geodesic acoustic modes (GAM) has been derived which includes collisionality, plasma beta and external sources of particle, momentum and heat. Local linear analysis shows that the GAM frequency increases with collisionality at low radial wave number krk_{r} and decreases at high krk_{r}. GAM frequency also decreases with plasma beta. Radial profiles of GAM frequency for two Tore Supra shots, which were part of a collisionality scan, are compared with these calculations. Discrepency between experiment and theory is observed, which seems to be explained by a finite krk_{r} for the GAM when flux surface averaged density n\langle n \rangle and temperature T\langle T \rangle are assumed to vanish. It is shown that this agreement is incidental and self-consistent inclusion of n\langle n \rangle and T\langle T \rangle responses enhances the disagreement more with krk_r at high krk_{r} . So the discrepancy between the linear GAM calculation, (which persist also for more "complete" linear models such as gyrokinetics) can probably not be resolved by simply adding a finite krk_{r}

    PLASMA SHAPE AND FUELING DEPENDENCE ON THE SMALL ELMS REGIME IN TCV AND AUG

    Get PDF
    A series of experiments has been conducted at AUG and TCV to disentangle the role of fueling, plasma triangularity and closeness to a double null (DN) configuration for the onset of the small ELM regime. At AUG, the role of the SOL density has been revisited. Indeed, it turns out that a large density SOL is not a sufficient condition to achieve the type-II (small) ELM regime. This has been demonstrated with a constant gas fueled plasma close to DN which has been progressively shifted down, relaxing therefore the closeness to DN at constant. As the plasma is moved down, Type-I ELMs are progressively restored, finally being the unique ELM regime. It is observed that not only the pedestal top profiles are unchanged, but also the SOL profiles remained unaffected by transition from Type-II to Type-I ELMs. We conclude that the separatrix density is not the unique key parameter and it is hypothesized that the local magnetic shear, modified by the closeness to DN, could play an important role. A small ELM regime with good confinement has been achieved at TCV, a full carbon machine featuring an open divertor. A systematic scan in the fueling rate has been done for both medium and high triangularity shapes. For the latter case, a configuration close to a DN configuration, the stored energy and the pedestal top pressure increase by 5% and 30% respectively compared to the medium triangularity case. For both shapes, as the D2 fueling is increased, the Type-I ELM frequency decreases and small ELMs are observed in between large ones. Finally for the high triangularity, at the maximum fueling rate, the large ELMs are fully suppressed and only the small ELMs remain. As observed in JET and AUG, the pedestal pressure degrades with increasing fueling, up to 40% for the high triangularity scenario, although the stored energy remains almost unchanged. It is also observed that, for both shapes, the density at the separatrix increases with the fueling rate, reaching ne,sep/nG ~0.3 at ne,av/nG~0.75. The small ELM regime at TCV is associated with a coherent mode at about 30 kHz seen by the magnetic probes located at the outboard midplane. The outer target heat loads from IR tomography are reduced by more than a factor of 5 when transiting towards the small ELM regime

    Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits

    Get PDF
    The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from “poor-sugar” environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae

    Plasmas de Fusion Magnétique

    No full text
    International audienceISSN : 1775-038

    11. Fusion par confinement magnétique, le projet ITER

    No full text
    Libérant une grande quantité d’énergie, sans produire de gaz à effet de serre ni de déchets radioactifs à durée de vie longue, la réaction de fusion nucléaire paraît très attractive. Comment l’utiliser pour produire de l’énergie à grande échelle et pour le long terme ? Maîtriser la fusion thermonucléaire est un défi scientifique et technologique formidable, qui a nécessité un effort de recherche important au niveau mondial depuis plusieurs décennies, et ne devrait déboucher vers un réacteur i..

    Une recherche ITER...ative

    No full text
    International audienc
    corecore