25 research outputs found

    Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch

    Get PDF
    This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.ANR GĂ©noplante GPLA0611GEuropean Union-FEDER, RĂ©gion Nord Pas de Calais ARCir PlantTEQ5National Science Foundation DBI-0209789ComisiĂłn Interministerial de Ciencia y TecnologĂ­a BIO2009-07040Junta de AndalucĂ­a P09-CVI-470

    Direct Determination of the Site of Addition of Glucosyl Units to Maltooligosaccharide Acceptors Catalyzed by Maize Starch Synthase I

    Get PDF
    Starch synthase (SS) (ADP-glucose:1,4-α-D-glucan 4-α-D-glucosyltransferase) elongates α-(1→4)-linked linear glucans within plastids to generate the storage polymers that constitute starch granules. Multiple SS classes are conserved throughout the plant kingdom, indicating that each provides a unique function responsible for evolutionary selection. Evidence has been presented arguing for addition of glucosyl units from the ADPglucose donor to either the reducing end or the non-reducing end of the acceptor substrate, although until recently direct evidence addressing this question was not available. Characterization of newly incorporated glucosyl units determined that recombinant maize (Zea mays L.) SSIIa elongates its substrates at the non-reducing end. However, the possibility remained that other SSs might utilize distinct mechanisms, and that one or more of the conserved enzyme classes could elongate acceptors at the reducing end. This study characterized the reaction mechanism of recombinant maize SSI regarding its addition site. Newly incorporated residues were labeled with 13C, and reducing ends of the elongation products were labeled by chemical derivitization. Electrospray ionization-tandem mass spectroscopy traced the two parameters, i.e., the newly added residue and the reducing end. The results determined that SSI elongates glucans at the non-reducing end. The study also confirmed previous findings showing recombinant SSI can generate glucans of at least 25 units, that it is active using acceptors as short as maltotriose, that recombinant forms of the enzyme absolutely require an acceptor for activity, and that it is not saturable with maltooligosaccharide acceptor substrates

    Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm

    Get PDF
    Maize opaque2 (o2) mutations are beneficial for endosperm nutritional quality but cause negative pleiotropic effects for reasons that are not fully understood. Direct targets of the bZIP transcriptional regulator encoded by o2 include pdk1 and pdk2 that specify pyruvate phosphate dikinase (PPDK). This enzyme reversibly converts AMP, pyrophosphate, and phosphoenolpyruvate to ATP, orthophosphate, and pyruvate and provides diverse functions in plants. This study addressed PPDK function in maize starchy endosperm where it is highly abundant during grain fill. pdk1 and pdk2 were inactivated individually by transposon insertions, and both genes were simultaneously targeted by endosperm-specific RNAi. pdk2 accounts for the large majority of endosperm PPDK, whereas pdk1 specifies the abundant mesophyll form. The pdk1- mutation is seedling-lethal, indicating that C4 photosynthesis is essential in maize. RNAi expression in transgenic endosperm eliminated detectable PPDK protein and enzyme activity. Transgenic kernels weighed the same on average as nontransgenic siblings, with normal endosperm starch and total N contents, indicating that PPDK is not required for net storage compound synthesis. An opaque phenotype resulted from complete PPDK knockout, including loss of vitreous endosperm character similar to the phenotype conditioned by o2-. Concentrations of multiple glycolytic intermediates were elevated in transgenic endosperm, energy charge was altered, and starch granules were more numerous but smaller on average than normal. The data indicate that PPDK modulates endosperm metabolism, potentially through reversible adjustments to energy charge, and reveal that o2- mutations can affect the opaque phenotype through regulation of PPDK in addition to their previously demonstrated effects on storage protein gene expression

    Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn.

    Get PDF
    Sweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets. The ten pseudochromosomes cover 92% of the total assembly and 99% of the estimated genome size, with a scaffold N50 of 222.2 Mb. This reference genome completely assembles the large structural variation that created the mutant sh2-R allele. Furthermore, comparative genomics analysis with six field corn genomes highlights differences in single-nucleotide polymorphisms, structural variations, and transposon composition. Phylogenetic analysis of 5,381 diverse maize and teosinte accessions reveals genetic relationships between sweet corn and other types of maize. Our results show evidence for a common origin in northern Mexico for modern sweet corn in the U.S. Finally, population genomic analysis identifies regions of the genome under selection and candidate genes associated with sweet corn traits, such as early flowering, endosperm composition, plant and tassel architecture, and kernel row number. Our study provides a high-quality reference-genome sequence to facilitate comparative genomics, functional studies, and genomic-assisted breeding for sweet corn

    Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts1[C][W][OA]

    No full text
    Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds

    Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch

    No full text
    This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1-ss2-or ss1-ss3-lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1-ss2-ss3-triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1. © 2011 The Author(s).We express our gratitude to Emilie Perrin for her excellent technical assistance in microscopy analysis. We acknowledge Adeline Courseaux for her technical assistance. Many thanks to Maria Cecilia Arias who provides transcriptomics data. This work was partly supported by ANR GĂ©noplante (GPLA0611G to CDH, NS, and VP), the European Union-FEDER and the RĂ©gion Nord Pas de Calais (ARCir PlantTEQ5 to CDH, NS, and FW), and by award no. DBI-0209789 from the National Science Foundation to AMM and by grants BIO2009-07040 from the ComisiĂłn Interministerial de Ciencia y TecnologĂ­a and the European Union-FEDER, and by grant P09-CVI-4704 from Junta de AndalucĂ­a to AM. PR was supported by an FPU grant from the Spanish Ministry of Education.Peer Reviewe

    Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize.

    No full text
    The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called "Quality Protein Maize" (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms

    Maize opaque5 Encodes Monogalactosyldiacylglycerol Synthase and Specifically Affects Galactolipids Necessary for Amyloplast and Chloroplast Function[C][W][OA]

    No full text
    The maize gene opaque5 encodes a monogalactosyldiacylglycerol synthase. Mutant analysis reveals that galactolipids with five double bonds are needed for thylakoid membrane function and cannot be substituted by the prevalent species with six double bonds. Galactolipid reduction results in altered starch granules, indicating a connection between amyloplast membranes and starch biosynthesis
    corecore