217 research outputs found

    SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis

    Get PDF
    AbstractForkhead Box P (FOXP) transcriptional repressors play a major role in brain development and their dysfunction leads to human cognitive disorders. However, little is known about how the activity of these proteins is regulated. Here, we show that FOXP1 SUMOylation at lysine 670 is required for recruiting the co-repressor CtBP1 and transcriptional repression. FOXP1 SUMOylation is tightly controlled by neuronal activity, in which synapse to nucleus signalling, mediated via NMDAR and L-type calcium channels, results in rapid FOXP1 deSUMOylation. Knockdown of FOXP1 in cultured cortical neurons stunts dendritic outgrowth and this phenotype cannot be rescued by replacement with a non-SUMOylatable FOXP1-K670R mutant, indicating that SUMOylation of FOXP1 is essential for regulation of proper neuronal morphogenesis. These results suggest that activity-dependent SUMOylation of FOXP1 may be an important mediator of early cortical development and neuronal network formation in the brain.</jats:p

    Ubiquitin C-terminal hydrolase L1 (UCH-L1):Structure, distribution and roles in brain function and dysfunction

    Get PDF
    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology

    Picking out the Details of Cerebellar LTD

    Get PDF
    Cerebellar long-term depression is thought to underlie motor learning and is mediated by internalization of AMPA receptors from the neuronal plasma membrane. In this issue of Neuron, Steinberg et al. provide firm evidence that PICK1 and the C terminus of GluR2 are central to this process by analyzing three different transgenic mice

    SENP3 Promotes an Mff-Primed Bcl-x L -Drp1 Interaction Involved in Cell Death Following Ischemia

    Get PDF
    Dysregulation of the mitochondrial fission machinery has been linked to cell death following ischemia. Fission is largely dependent on recruitment of Dynamin-related protein 1 (Drp1) to the receptor Mitochondrial fission factor (Mff) located on the mitochondrial outer membrane (MOM). Drp1 is a target for SUMOylation and its deSUMOylation, mediated by the SUMO protease SENP3, enhances the Drp1-Mff interaction to promote cell death in an oxygen/glucose deprivation (OGD) model of ischemia. Another interacting partner for Drp1 is the Bcl-2 family member Bcl-x(L), an important protein in cell death and survival pathways. Here we demonstrate that preventing Drp1 SUMOylation by mutating its SUMO target lysines enhances the Drp1-Bcl-x(L) interaction in vivo and in vitro. Moreover, SENP3-mediated deSUMOylation of Drp1 promotes the Drp1-Bcl-x(L) interaction. Our data suggest that Mff primes Drp1 binding to Bcl-x(L) at the mitochondria and that Mff and Bcl-x(L) can interact directly, independent of Drp1, through their transmembrane domains. Importantly, SENP3 loss in cells subjected to OGD correlates with reduced Drp1-Bcl-x(L) interaction, whilst recovery of SENP3 levels in cells subjected to reoxygenation following OGD correlates with increased Drp1-Bcl-x(L) interaction. Expressing a Bcl-x(L) mutant with defective Drp1 binding reduces OGD plus reoxygenation-evoked cell death. Taken together, our results indicate that SENP3-mediated deSUMOlyation promotes an Mff-primed Drp1-Bcl-x(L) interaction that contributes to cell death following ischemia

    Proteins Involved in the Trafficking and Functional Synaptic Expression of AMPA and KA Receptors

    Get PDF
    α-Amino-3-hydroxy-5-methylisoxazolepropionate receptors (AMPARs) mediate the majority of fast synaptic transmission in the mammalian central nervous system, play a central role in synapse stabilisation and plasticity, and their prolonged activation is potently neurotoxic. The functional roles of kainate receptors (KARs) are less well defined but they play a role in some forms of synaptic plasticity. Both receptor types have been shown to be highly developmentally and activity-dependently regulated and their functional synaptic expression is under tight cellular regulation. The molecular and cellular mechanisms that regulate the synaptic localisation and functional expression of AMPARs and KARs are objects of concerted research. There has been significant progress towards elucidating some of the processes involved with the discovery of an array of proteins that selectively interact with individual AMPAR and KAR subunits. These proteins have been implicated in, among other things, the regulation of post-translational modification, targeting and trafficking, surface expression, and anchoring. The aim of this review is to present an overview of the major interacting proteins and suggest how they may fit into the hierarchical series of events controlling the trafficking of AMPARs and KARs

    Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs

    Get PDF
    AMPA receptors (AMPARs) are dynamically regulated at synapses, but the time course and location of their exocytosis and endocytosis are not known. Therefore, we have used ecliptic pHluorin-tagged glutamate receptor 2 to visualize changes in AMPAR surface expression in real time. We show that synaptic and extrasynaptic AMPARs respond very differently to NMDA receptor activation; there is a rapid internalization of extrasynaptic AMPARs that precedes the delayed removal of synaptic AMPARs

    Editorial:Ionotropic Glutamate Receptors Trafficking in Health and Disease

    Get PDF
    The knowledge about the properties and importance of ionotropic glutamate receptor trafficking is ever increasing. Importantly, the pace of the progress has been accelerated in recent years. Here, our contributors provide a) reviews on specific topics that present an up-to-date overview of the field, as well as b) original articles with the relevant new findings
    • …
    corecore