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Abstract 

Retromer is an evolutionarily conserved endosomal trafficking complex that mediates the 

retrieval of cargo proteins from a degradative pathway for sorting back to the cell surface. To 

promote cargo recycling, the core retromer trimer of VPS26, VPS29 and VPS35 recognises 

cargo either directly, or through an adaptor protein, the most well-characterised of which is the 

PDZ domain-containing sorting nexin SNX27.  

Neuroligins (NLGs) are postsynaptic trans-synaptic scaffold proteins that function in the 

clustering of postsynaptic proteins to maintain synaptic stability. Here, we show that each of 

the NLGs (NLG1-3) bind to SNX27 in a direct PDZ ligand-dependent manner. Depletion of 

SNX27 from neurons leads to a decrease in levels of each NLG protein and, for NLG2, this 

occurs as a result of enhanced lysosomal degradation. Notably, while depletion of the core 

retromer component VPS35 leads to a decrease in NLG1 and NLG3 levels, NLG2 is 

unaffected, suggesting that, for this cargo, SNX27 acts independently of retromer.  

Consistent with loss of SNX27 leading to enhanced lysosomal degradation of NLG2, 

knockdown of SNX27 results in fewer NLG2 clusters in cultured neurons, and loss of SNX27 

or VPS35 reduces the size and number of gephyrin clusters. Together, these data indicate 

that NLGs are SNX27-retromer cargoes and suggest that SNX27-retromer controls inhibitory 

synapse number, at least in part through trafficking of NLG2.  

 

Keywords: Gephyrin / Inhibitory synapse / Neuroligin / Retromer / SNX27   

 

Abbreviations: AMPA – α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; EGFR – 

epidermal growth factor receptor; NLG – neuroligin; NMDA – N-methyl-D-aspartate; NRX – 

neurexin; PDZ – postsynaptic density 95 (PSD95), disk large, zona occludens; SNX – 

sorting nexin; TGN – trans-Golgi network; VPS – vacuolar protein sorting.  

  



 
 

3 

Introduction 

Retromer is a highly conserved endosomal sorting complex involved in the retrieval and 

retrograde transport of endocytosed transmembrane proteins (cargoes) to the trans-Golgi 

network (TGN) or cell surface [1, 2]. The core cargo recognition complex of retromer 

comprises three vacuolar protein sorting (VPS) proteins, VPS26, VPS29 and VPS35 which, 

in association with multiple other proteins, including members of the sorting nexin (SNX) 
family [3, 4], concentrate cargoes on the endosomal surface for subsequent sorting. For many 

cargo proteins, the core retromer complex is sufficient for sequence-specific cargo recognition. 

Additionally, however, cargoes can be coupled to retromer through adaptor proteins, the best-

characterised of which is SNX27.  

SNX27 is the only SNX to contain a PDZ domain and binds to type 1 PDZ-binding motifs of 

interacting proteins [5]. To simultaneously interact with a cargo protein and the retromer 

complex, the PDZ domain of SNX27 has an extended core fold allowing it to bind VPS26 non-

canonically [6]. Through this mechanism, SNX27 links PDZ ligand-containing cargo proteins 

to the endosomal trafficking machinery, rescuing them from lysosomal degradation and 

promoting recycling to the plasma membrane [4, 7, 8].  

The first validated transmembrane cargo of SNX27-retromer was the b2-adrenergic receptor 

[7]. Subsequent proteomics and structural analyses have identified over 400 potential SNX27 

transmembrane protein ligands [9, 10], suggesting SNX27 acts as a major sorting determinant 

for a wide array of cargo proteins. Furthermore, while many of these SNX27 cargoes require 

retromer for their retrieval, many are insensitive to retromer depletion, suggesting that, for 

some cargo proteins, SNX27 can promote recycling independently of retromer [10].  

The role and cargoes of retromer and SNX27 are of particular interest in neurons because of 

the highly complex and stringently regulated trafficking of membrane proteins required to 

maintain neuronal excitability and support synaptic transmission. SNX27-retromer cargoes 

identified in neurons include AMPA and NMDA-type glutamate receptors, which support the 

vast majority of excitatory synaptic transmission [11-16] and Kir3 potassium channels [17, 18]. 

Furthermore, consistent with an important role in neuronal function, SNX27 heterozygous 

knockout mice have diminished numbers of AMPA and NMDA receptors and exhibit learning 

and memory deficits [15]. These workers also reported that SNX27 is reduced in human 

Down's syndrome brains and up-regulating SNX27 rescues defects in Down's syndrome 

model mice [15]. Moreover, point mutations in the retromer components VPS26 and VPS35 

lead to familial Parkinson’s disease [19], and levels of retromer are reduced in the brains of 

humans with Alzheimer’s disease [20], suggesting that defective retromer-dependent 

trafficking pathways may directly lead to various neurodegenerative disease states.   
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While the actions of SNX27-retromer at excitatory synapses is the subject of extensive 

research, potential roles at inhibitory synapses have been less widely explored. However, a 

recent proteomics study identified the inhibitory synapse-specific protein neuroligin 2 (NLG2) 

as a candidate SNX27-retromer cargo [10] and it has subsequently been reported that the 

core retromer component VPS35 associates with NLG2 in cultured hippocampal neurons [21].  

NLGs are postsynaptic cell adhesion molecules that act as ligands for presynaptic neurexins 

(NRXs) to form trans-synaptic complexes [22, 23].  NLG2 is well established to play key roles 

in the maturation and function of inhibitory synapses [24, 25]. Importantly, NLG2 interacts with 

the Rho GDP/GTP-exchange factor collybistin to recruit and cluster the inhibitory postsynaptic 

scaffolding protein gephyrin [26-28], which is required for the synaptic localisation of glycine 

receptors (GlyRs) and major GABAA receptor (GABAAR) subtypes [29, 30]. Correspondingly, 

mice lacking NLG2 display anxiety phenotypes, have dysfunctional inhibitory postsynaptic 

structures [31] and show a decrease in both postsynaptic gephyrin and GABAAR cluster 

density in hippocampal neurons [32]. Moreover, mutations in NLG2 are implicated in a range 

of psychiatric disorders including autism spectrum disorder and schizophrenia [33-36]. 

In this study, we show that SNX27 interacts with each of the NLG proteins, and rescues NLG2 

from lysosomal degradation. Moreover, loss of SNX27, or of the core retromer component 

VPS35, perturbs the clustering of NLG2 and, correspondingly, reduces inhibitory synapse 

number as assessed by staining for the inhibitory synapse marker protein gephyrin. These 

data highlight SNX27 as a novel regulator of NLG trafficking, and SNX27-retromer as an 

important determinant of inhibitory synapse number, at least in part, through regulation of 

NLG2.  

 

Methods 

Antibodies 

The following antibodies were used in this study: anti-b-Actin (mouse monoclonal, Sigma-

Aldrich, clone AC-15, A5441, 1:10,000), Anti-EGFR (rabbit monoclonal, Abcam, ab52894, 

1:1000), Anti-Gephyrin (mouse monoclonal, Synaptic Systems, clone mAb7a, 147 021, 

1:1000) Anti-GFP (chicken polyclonal, Abcam, ab13970, 1:600), Anti-GFP (rat monoclonal, 

ChromoTek, 3H9, 1:5000), Anti-GluA2 (rabbit polyclonal, Synaptic Systems, 182 103, 1:1000), 

Anti-GST (goat polyclonal, GE Healthcare, 27-4577-01, 1:10,000), Anti-HA (mouse 

monoclonal, Sigma-Aldrich, clone HA-7, H3663, 1:1000), Anti-HA (rabbit polyclonal, Sigma 

Aldrich, H6908, 1:100), Anti-LAMP1 (rabbit polyclonal, Abcam, ab24170, 1:1000), Anti-NLG1 

(mouse monoclonal, Neuromab, N97A/31, 1:500), Anti-NLG2 (mouse monoclonal, Synaptic 
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Systems, clone 5E6, 129 511, 1:2000 WB, 1:600 ICC), Anti-NLG3 (mouse monoclonal, 

Neuromab, N110/29, 1:500), Anti-GluN1 (rabbit monoclonal, Cell Signaling, D65B7 5704, 

1:2000), Anti-SNX27 (mouse monoclonal, Abcam, clone 1C6, ab77799, 1:1000), Anti-SNX27 

(rabbit polyclonal, a kind gift from Dr Martin Playford (NIH, USA), 1:2000), Anti-VPS35 (rabbit 

polyclonal, Abcam, ab97545, 1:2000).  

DNA constructs and shRNA 

For Sindbis virus production, human SNX27 was cloned into the vector pSinRep5(nsP2S) 

[37]. The intracellular CT of NLG1 (amino acids 719 – 843), NLG2 (amino acids 700 – 836) 

and NLG3 (amino acids 731 – 848) were cloned from rat whole brain cDNA into the vector 

pEGFP-C3. The PDZ-AAA mutants of NLG CT were created by site-directed mutagenesis of 

the NLG1-3 CT pEGFP-C3 constructs. For the purification of recombinant protein, human 

SNX27 was subcloned into the vector pET28a and rat NLG2-CT-WT and –PDZ-AAA into 

pGEX-4T-1. For lentivirus production, shRNAs driven by an H1 promoter were produced for 

the knockdown of rat SNX27 (target sequence 5’-aagaacagcaccacagaccaa-3’), rat VPS35 

(target sequence 5’- aacagtggagatattcaataa-3’ [38]) and rat NLG2 (target sequence 5’-

gcaagttcaacagcaaggaaa-3’) and oligonucleotides were cloned into a modified pXLG3-GFP 

viral vector [39]. To ensure specificity, shRNA target sequences were BLAST searched 

against the rat genome before use. For rescue experiments, GFP-tagged rat SNX27 or VPS35 

were silently point-mutated at 3 consecutive codons in the shRNA target sequence to make 

them insensitive to the shRNA, and cloned into the corresponding shRNA construct in place 

of GFP. The fidelity of all constructs was confirmed by DNA sequencing. 

Cell culture and transfection 

Primary neuronal cultures were prepared from embryonic day (E) 18 Wistar rat brains. 

Dissociated cortical cells were grown in 35 mm plastic dishes (5.5x105 cells per well) and 

hippocampal cells were grown on 25 mm glass coverslips (1.6x105 cells per coverslip) in 

plating medium (Neurobasal medium, 5% horse serum, 2 % B27, 1 % Glutamax), which was 

exchanged for feeding medium 16 hours after plating (Neurobasal medium, 2 % B27, 0.4% 

Glutamax). HEK293T cells were cultured in a T75 flask containing Complete DMEM medium 

(DMEM medium, 10 % Fetal Bovine Serum, 1 % L-glutamine and 1 % Penicillin/Streptomycin) 

and regularly passaged. For transfection, HEK293T cells were grown in 35 mm plastic dishes 

in Complete DMEM medium which was replaced prior to transfection with Transfection DMEM 

medium (DMEM medium, 10 % FBS and 1 % L-glutamine). All cells were cultured in a 

humidified incubator at 37 °C and 5 % CO2. Hippocampal neurons (for all imaging 

experiments) and HEK293T cells were transfected using Lipofectamine 2000 (Thermo Fisher). 

Lentivirus and Sindbis virus production 
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Lentiviruses were produced in HEK293T cells by transfection of pXLG3 virus constructs along 

with the helper vectors pMD2.G and p8.91, as described previously [40]. Sindbis viruses were 

produced in BHK cells as described previously [41].  

Cell lysing and immunoprecipitation 

All solutions were pre-chilled to 4 °C and all steps were carried out on ice. Cells were washed 

with 1x PBS and lysed in lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 0.5 % Triton X-100 

and cOmplete protease inhibitors (Roche) in ddH2O). Lysates were briefly vortexed, kept on 

ice for 20 min to allow for protein solubilisation and then clarified by centrifuging at 20,000 g 

for 20 min at 4 °C. Lysate supernatants were either used for Western blotting or for 

immunoprecipitation in which case a 25 μl input sample was retained. GFP-trap beads 

(ChromoTek) were washed twice with lysis buffer by centrifuging at 1000 g for 2 min at 4 °C. 

Lysate was then added to the beads and incubated for 1 hour at 4 °C after which the beads 

were washed three times with lysis buffer. Samples were prepared for Western blotting by 

being resuspended in 2x Laemmli sample buffer and boiled for 5 min at 95 °C.   

Surface biotinylation 

Surface biotinylation experiments were carried out as described previously [42]. Briefly, 

neurons were washed in ice-cold PBS, followed by labelling with 0.3 mg/ml Sulfo-NHS-SS-

Biotin (Thermo Fisher). After extensive washes with PBS, and a single wash with 50 mM 

ammonium chloride to quench any unreacted biotin, cells were lysed and cleared lysates 

prepared as described above. A lysate sample was then taken, and equal amounts of lysate 

were incubated with streptavidin-agarose (Sigma Aldrich) on a wheel for 1 hour at 4 °C. Beads 

were then washed 4 times with lysis buffer, and proteins eluted by heating in 2x Laemmli buffer 

for 10 minutes at 95 °C. 

Western blotting 

Samples for Western blotting were resolved by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and separated proteins were transferred to Immobilon-PVDF 

(polyvinylidene difluoride) 0.45 µm membrane (Merck Millipore). After protein transfer, the 

membrane was briefly washed with TBS-T (1x Tris Buffered Saline, 0.1 % Tween), blocked in 

5 % non-fat milk powder and incubated with primary antibody diluted in 5 % non-fat milk 

powder for 1 hour at RT. Following incubation, the membrane was briefly washed three times 

with TBS-T and incubated with HRP-conjugated secondary antibody (Sigma-Aldrich, 

1:10,000) diluted in 5 % non-fat milk powder for 45 min at RT. Afterwards, the membrane was 

washed three times for 5 min in TBS-T at RT and incubated for 1 min at RT with Enhanced 

Chemiluminescence (ECL) substrate. Protein bands were visualised using an Odyssey Fc (LI-
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COR) detection system or in a dark room by exposing X-ray film (Kodak) to the membrane 

and developing the film with an automatic medical X-ray film processor (Konica). 

Recombinant protein purification and in vitro interaction assay 

SNX27 in the vector pET28a and NLG2-CT-WT and –PDZ-AAA in pGEX-4T-1 were 

transformed into competent BL21 Escherichia coli (E. coli) using standard procedures. Single 

colonies were grown in ampicillin-containing 2xYT broth at 37 °C and protein production was 

induced with 25 µM isopropyl β-D-thiogalactopyranoside (IPTG) for 15 h at 18 °C. E. coli were 

then centrifuged at 3000 g for 20 min at 4 °C to pellet cells and resuspended in lysis buffer (25 

mM Tris pH 7.5, 150 mM NaCl, 10 % glycerol and cOmplete protease inhibitors in ddH2O + 

10 mM imidazole for His-fusion protein only) and supplemented with Triton X-100 to a final 

concentration of 1 %. Cells were lysed by sonication, left on ice for 15 min to allow for 

solubilisation and clarified by centrifugation at 50,000 g for 30 min at 4 °C. Glutathione or Ni-

NTA Sepharose 4 Fast Flow beads were washed twice with wash buffer (25 mM Tris pH 7.5, 

150 mM NaCl, 10 % glycerol and 1 % Triton X-100 in ddH2O) and bacterial lysate was 

incubated on washed beads for 2 h at 4 °C. Following incubation, the beads were washed four 

times with wash buffer and fusion proteins were eluted with three 5 min incubations at RT with 

elution buffer (wash buffer supplemented with 10 mM glutathione for GST-fusion proteins or 

wash buffer without glycerol and Triton X-100 supplemented with 250 mM imidazole for His-

fusion protein). To test for interactions, Glutathione Sepharose 4 Fast Flow beads were 

washed twice with bead wash buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 % Triton X-100 and 

cOmplete protease inhibitors in ddH2O).1 µg GST or GST-NLG2 CT in binding buffer (wash 

buffer containing 0.1 % BSA) was incubated with the washed beads for 1 h at 4 °C. Following 

immobilisation, beads were washed four times with bead wash buffer, then incubated with 50 

ng His-SNX27 in binding buffer for 2 h at 4 °C and subsequently washed three times with bead 

wash buffer. 8 ng His-SNX27 in binding buffer was used as an input and all samples were 

prepared for Western blotting by resuspension in 2x Leammli sample buffer and boiled for 5 

min at 95 °C.  

Immunocytochemistry 

Hippocampal neurons on glass coverslips were transfected with DNA constructs on DIV 16 

and fixed and immunostained for confocal microscopy on DIV 21. Neurons were fixed in warm 

4 % PFA (paraformaldehyde) in 1x PBS (phosphate-buffered saline) for 15 min and then 

washed three times with 1x PBS. The PFA was quenched with 1 ml 100mM glycine in 1x PBS 

after which the neurons were washed three times with 1x PBS. Neurons were then 

permeabilised and blocked with TBP (0.1 % Triton X-100 and 2 % Bovine Serum Albumin 

(BSA) in 1x PBS) for 20 min. After blocking, the neurons were incubated with primary 
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antibodies diluted in 3 % BSA in 1x PBS for 45 min and washed three times with 1x PBS. The 

neurons were then incubated with Cy2-, Cy3- or Cy5-conjugated secondary antibodies 

(Sigma-Aldrich, 1:600) diluted in 3 % BSA in 1x PBS for 45 min. After four washes with 1x 

PBS the coverslips were mounted on glass microscope slides using Fluoromount-G with DAPI 

(Thermo Fisher) and stored at 4 °C until imaged. 

Image acquisition and quantification 

Confocal images were captured using a 63x HCX PL APO CS oil-immersion objective on a 

Leica SP5-II confocal laser scanning microscope attached to a Leica DMI 6000 inverted 

epifluorescence microscope. All parameters, including excitation and gain, were kept constant 

across all neurons and coverslips imaged in an experiment to generate a complete data set. 

A full data set was acquired by imaging eight neurons from three different coverslips from 

three independent dissections per experimental group unless otherwise stated. Image 

analysis was performed using ImageJ software (NIH) in combination with the Fiji image 

processing package. For each neuron, the Z-stack was projected at maximum intensity and 

three regions of interest (ROI) were drawn free-hand around secondary dendrites. For cluster 

analysis, the channel was thresholded to create a binary image and the cluster size (area in 

µm2) and density per ROI were measured using the Analyse Particles Tool. For quantification 

of colocalisation, the Pearson’s correlation for each ROI was measured using the 

Colocalisation coloc2 Tool. Numerical values obtained in ImageJ were processed in Microsoft 

Excel and exported to Graphpad Prism (version 7.0) for statistical analysis. 

Statistical analysis 

For statistical analysis of cluster size, a cumulative frequency distribution analysis showed a 

non-parametric distribution and values were therefore compared for statistical significance 

using a Kolmogorov-Smirnov or Kruskal-Wallis test. Statistical analysis of cluster density and 

Pearson’s correlation were performed using a Student t-test or ANOVA. Statistical analysis of 

Western blots was performed using one-sample t-test followed by Bonferroni post-hoc test to 

account for multiple comparisons. Data are presented as ± SEM and parameters for 

significance are *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.  

 

Results 

SNX27 interacts with NLG1, 2 and 3 

We first investigated if SNX27 binds to NLGs by expressing GFP-SNX27 in cultured cortical 

neurons using Sindbis virus. Neurons were infected with virus at DIV 17, and GFP-SNX27 
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interacting proteins were isolated by GFP-trap assays 20-22h post-infection, followed by 

Western blotting for NLG1, 2 and 3. As shown in Fig 1A all of the endogenous NLG subtypes 

co-immunoprecipitated with GFP-SNX27. To determine whether this interaction was mediated 

by the intracellular C-terminal (CT) domains of the NLGs, we next expressed the CT domains 

of each NLG fused to GFP in HEK293T cells, and isolated interacting proteins by GFP-trap 

followed by Western blotting for endogenous SNX27 (Fig 1B). Again NLG1-3 CT interacted 

with SNX27, but the affinity for SNX27 was highest in the case of NLG2.  

To define if NLG binding to SNX27 was mediated by PDZ interactions we mutated the C-

terminal PDZ-ligand in the GFP-NLG1-3 CT constructs (Threonine-2, Arginine-1, Valine0) to 

three Alanines and expressed these GFP-tagged PDZ-AAA mutants in HEK293T cells. In all 

cases, the SNX27-NLG interaction was completely lost in the GFP-NLG-CT-PDZ-AAA 

mutants (Fig 1C), consistent with NLG1-3 interacting with SNX27 through their C-terminal PDZ 

ligands.  

SNX27 binding to NLG2 is directly mediated by a type 1 PDZ interaction 

Given that NLG2 bound most robustly to SNX27 in our assays, and the fact that it is a key 

component of inhibitory synapses, we focused the properties and potential roles of SNX27-

retromer interaction with NLG2. To exclude any contribution of an indirect association and 

confirm that NLG2 and SNX27 bind directly via a PDZ interaction, we performed in vitro 

binding assays using purified proteins. Free GST, GST-NLG2-CT-WT, GST-NLG2-CT-PDZ-

AAA and His-SNX27 were expressed and purified from E. coli. The purified GST fusion 

proteins were incubated with His-SNX27 and isolated on glutathione beads followed by 

Western blotting. As shown in Fig 2, recombinant His-SNX27 bound to GST-NLG2-CT-WT 

but not to GST-NLG2-CT-PDZ-AAA, confirming a direct PDZ-mediated interaction between 

SNX27 and NLG2. 

SNX27 knockdown decreases total levels of NLG1-3 and known synaptic SNX27-
retromer cargoes 

Knockdown of SNX27, or of the core retromer component VPS35, decreases total levels of 

cargo proteins in clonal cell lines by preventing their retrieval from lysosomal degradation [10]. 

We therefore examined the effects of knocking down SNX27 or VPS35 in cultured rat cortical 

neurons. Neurons were infected at DIV 9-11 with lentiviral constructs that express shRNAs 

against SNX27 (shSNX27), VPS35 (shVPS35) or a control non-targeting shRNA. Seven days 

post-infection, neurons were lysed and protein levels analysed by Western blotting. shSNX27 

and shVPS35 were very efficient and significantly decreased levels of SNX27 and VPS35 to 

13.1±3.26% and 15.6±3.49%, respectively, of control cells (Fig 3A, and C).  



 
 

10 

Consistent with SNX27 playing a key role in NLG recycling, SNX27 knockdown dramatically 

reduced levels of NLG1-3, indicating that these proteins are rescued from degradation in a 

manner dependent on their interaction with SNX27 (Fig 3B and D). In addition, we tested the 

levels of subunits of AMPARs and NMDARs, which have both been previously reported as 

SNX27-retromer cargoes [11, 13-16]. Consistently, shSNX27 significantly reduced total levels 

of the AMPAR subunit GluA2 and NMDAR subunit GluN1. Total levels of EGFR, which is not 

a retromer cargo [10], were unaffected by SNX27 or VPS35 knockdown (Fig 3B and E). 

Importantly, the reduced levels of NLG2 following SNX27 knockdown were rescued to control 

levels by concomitant re-expression of a GFP-tagged shRNA-resistant SNX27 

(Supplementary Fig 1A), confirming the effects of the knockdown were specific to loss of 

SNX27. 

SNX27 traffics NLG2 independently of retromer 

Interestingly, knockdown of the core retromer component VPS35 had a different profile to 

SNX27 knockdown. NLG1 and NLG3 levels were significantly reduced by shVPS35, albeit not 

to the same extent as for shSNX27, suggesting their trafficking is partly dependent on the core 

retromer trimer (Fig 3B and D). Levels of GluA2 were also reduced to a similar extent by 

shSNX27 and shVPS35. Again, we validated the specificity of these effects by confirming that 

the loss of NLG1 and NLG3 upon VPS35 knockdown was rescued by expression of a GFP-

tagged shRNA-resistant VPS35 (Supplementary Fig 1B).  

In stark contrast, however, total levels of NLG2 and of the NMDAR subunit GluN1, which were 

reduced by >50% by shSNX27, were unaffected by shVPS35. Intriguingly, these results 

suggest that SNX27 selectively acts via a mechanism independent of the core retromer VPS 

trimer in the recycling of NLG2 and GluN1 (Fig 3B and E). 

SNX27 knockdown reduces NLG2 surface expression 

To determine whether the loss of total NLG2 resulting from SNX27 knockdown also led to a 

corresponding loss of NLG2 from the cell surface, we performed surface biotinylation 

experiments. Neurons were infected with control, shSNX27 or shVPS35 viruses at DIV 9-11 

and surface proteins labelled with biotin 7 days later. Cells were then lysed, and surface 

proteins isolated on streptavidin beads. SNX27 knockdown decreased total NLG2 levels with 

a corresponding decrease in surface NLG2 levels (Supplementary Fig 2). VPS35 knockdown, 

on the other hand, did not alter either total NLG2 or surface NLG2 levels (Supplementary Fig 

2).  

SNX27 knockdown increases lysosomal degradation of NLG2  
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To investigate the mechanism underlying SNX27 regulation of total NLG2 levels we analysed 

colocalisation of NLG2 with the lysosomal marker protein LAMP1 following SNX27 or VPS35 

knockdown. Neurons were transfected with shRNA constructs at DIV 16 and then fixed and 

stained for NLG2 and LAMP1 5 days later. As expected from knockdown of SNX27 leading to 

a loss of total NLG2 protein, shSNX27 resulted in a significant increase in NLG2/LAMP1 

colocalisation (Fig 4A and B). However, consistent with the lack of effect of VPS35 knockdown 

on NLG2 (Fig 3B and D), shVPS35 did not increase NLG2/LAMP1 colocalisation (Fig 4A and 

B). Importantly, knockdown of SNX27 or VPS35 had no effect on LAMP1 cluster density or 

cluster size (Supplementary Fig 3), indicating loss of these proteins was not altering global 

levels of lysosomal degradation. These data indicate that SNX27, but not VPS35 retromer, is 

involved in retrieving NLG2 from lysosomal degradation. 

SNX27 knockdown decreases the density but not the size of NLG2 clusters 

NLG2 is predominantly localised at inhibitory synapses so we next investigated how SNX27 

or VPS35 knockdown affects NLG2 distribution. DIV 16 hippocampal neurons were 

transfected with GFP-tagged shSNX27, fixed at DIV 21, and immunostained for gephyrin, a 

scaffolding protein that is a central component of inhibitory synapses [26], and NLG2, and 

imaged by confocal microscopy (Fig 5). For these experiments, we chose to analyse NLG2 

clusters in secondary dendrites, defined as dendritic branches emerging from primary 

dendrites which in turn emerge from the soma. This approach allowed us to unambiguously 

identify single NLG2 clusters away from the high density of clusters around the soma. These 

analyses revealed a significant decrease in the number of NLG2 puncta in both SNX27 or 

VPS35 knockdown neurons (Fig 5A and B). Furthermore, there was a significant decrease in 

the size of NLG2 puncta in the VPS35 knockdown cells. Surprisingly, however, the size of 

NLG2 puncta was not significantly reduced by SNX27 knockdown (Fig 5A and C). 

SNX27 or VPS35 knockdown decrease both the density and size of gephyrin clusters 

NLG2 has been reported to recruit and directly bind gephyrin so we next tested the effects of 

SNX27 or VPS35 knockdown on gephyrin clustering. Consistent with their effects on NLG2, 

ablation of either SNX27 or VPS35 significantly decreased the size and density of gephyrin 

clusters in hippocampal neurons, demonstrating that both SNX27 and retromer play key roles 

in regulating the number of inhibitory synapses (Fig 6). 

NLG2 knockdown significantly decreases size and density of gephyrin clusters 

Finally, to determine if the effects of SNX27 or VPS35 knockdown on gephyrin clustering are 

mediated by NLG2, we directly knocked down NLG2. Our shNLG2 caused a ~50% decrease 

in NLG2 levels (Fig 7A and B), similar to the effect of shSNX27 on total NLG2 levels (Fig 3). 

Interestingly, ~50 loss of NLG2, directly mimicking the effect of SNX27 loss, resulted in a 
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reduction in the density and size of gephyrin clusters, similar to loss of SNX27 or VPS35 (Fig 

7C, D and E). Taken together, our data are consistent with a model whereby loss of SNX27 

or VPS35 affects inhibitory synapse number via altered stability or clustering of NLG2, and 

highlight SNX27 and retromer as novel determinants of inhibitory synapse number, at least in 

part, through regulation of NLG2.  

 

Discussion 

It is well established that the regulation and trafficking of NLGs is an important determinant of 

synapse formation and stability [22, 23]. However, relatively little is known about how NLG 

trafficking is mediated, and few direct NLG interacting proteins have been identified. 

Here we identify NLG1-3 as novel SNX27 PDZ binding proteins and show that loss of SNX27 

in cultured neurons decreases NLG1-3 levels. Since NLG2, a NLG primarily involved in the 

maintenance of inhibitory synapses [26-28], was the highest affinity SNX27 interactor, we 

focused on this interaction. We show that loss of SNX27 increases lysosomal degradation of 

NLG2 and reduces the number of NLG2 clusters in cultured hippocampal neurons. These data 

demonstrate that SNX27 plays a key role in rescuing endocytosed NLG2 from lysosomal 

degradation to allow recycling back to the plasma membrane.  

Interestingly, knockdown of the core retromer component VPS35 neither decreased total 

levels of NLG2 nor increased localisation at lysosomes. However, VPS35 knockdown did 

decrease both NLG2 cluster size and density in secondary dendrites. The most 

straightforward explanation for these results is that increased degradation of another, as yet 

unidentified, retromer cargo plays a role in NLG2 clustering. Indeed, it has been reported that 

NLG2 can heterodimerise with NLG3 at inhibitory synapses [43]. Since NLG3 levels were 

reduced by VPS35 knockdown, it remains possible that loss of VPS35 results in reduced 

NLG2 clustering through loss of NLG3. Nonetheless, together with knockdown of SNX27, 

these data indicate that both SNX27 and VPS35 control the number or size of NLG2 clusters 

through either direct trafficking of NLG2 (via SNX27) and indirect mechanisms (VPS35).  

It is notable that, while knockdown of SNX27 reduced levels of all NLG proteins, knockdown 

of VPS35 did not reduce total levels of NLG2, and reduced levels of NLG1 and NLG3 more 

modestly than knockdown of SNX27. Thus, SNX27 appears to retrieve NLG2 from 

degradation in a manner distinct from its more well-characterised role of acting as a PDZ 

adaptor protein for retromer. While the mechanisms underpinning this retromer-independent 

trafficking pathway remain to be defined, we observed a similar profile for the NMDA receptor 

subunit GluN1, suggesting it may represent an important additional regulatory pathway for 
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synaptic membrane proteins. Indeed, a previous proteomic study identified proteins in HeLa 

cells that are reduced or lost following knockdown of SNX27 but not of VPS35, suggesting this 

may represent a generalised SNX27-dependent trafficking pathway [10].  

NLG2 plays a key role in regulating inhibitory synapse number through controlling the 

clustering of the postsynaptic scaffold protein gephyrin [26] but there have been no reports for 

the involvement of SNX27-retromer in this process. Here, consistent with the effects of 

knockdown of SNX27 or VPS35 on NLG2 cluster size and density, we show that knockdown 

of SNX27 or VPS35 reduced gephyrin cluster size and density and thus inhibitory synapse 

number. Moreover, these effects on gephyrin clustering are similar to directly knocking down 

NLG2, suggesting that the effects of SNX27 or VPS35 on inhibitory synapse number are 

mediated, at least in part, through controlling the abundance and targeting of NLG2. 

SNX27 dysfunction has been shown to underlie excitatory synaptic defects associated with 

Down’s Syndrome and epilepsy [15, 44]. Moreover, retromer dysfunction has been reported 

in a number of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases 

[19, 20, 45]. Our results indicate that retromer and/or SNX27 dysfunction likely contribute to 

pathogenesis through altered degradation or mistargeting of the NLG proteins. In particular, 

our data demonstrate that SNX27 and retromer control inhibitory synapse number, at least in 

part through trafficking of NLG2, suggesting that retromer dysfunction could play a role in 

disorders characterised by aberrant inhibitory synaptic transmission or network function, such 

as epilepsy and autism. Further studies will be required to investigate this exciting possibility.  
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Figure Legends: 

Figure 1. SNX27 binds NLG 1-3 through a PDZ-interaction.  

(A) SNX27 interacts with NLG1-3 in cortical neurons. DIV 14 cortical neurons were infected 
with a Sindbis virus encoding GFP-SNX27 or GFP. Neurons were lysed 22-24 hours post-
infection, subjected to GFP-trap immunoprecipitation and Western blotted as indicated. 
Note, the bands beneath GFP-SNX27 in the immunoprecipitation likely represent 
degradation products of the overexpressed GFP-SNX27.  

(B) The intracellular C-termini (CT) of NLG1-3 bind endogenous SNX27 in HEK293T cells. 
HEK293T cell were transfected with GFP-NLG1-3 CT. Cells were lysed 48 hours post-
transfection, subjected to GFP-trap immunoprecipitation and Western blotted as indicated.  

(C) Mutation of the NLG PDZ ligands prevent interaction with endogenous SNX27 in 
HEK293T cells. HEK293T cells were transfected with GFP-NLG1-3 CT WT or PDZ-AAA. 
Cells were lysed 48 hours post-transfection, subjected to GFP-trap immunoprecipitation and 
Western blotted as indicated.  

 

Figure 2. SNX27 and NLG 2 bind directly through a PDZ interaction.  

(A) Bacterially expressed GST-NLG2 CT WT, PDZ-AAA and GST. Coomassie stained gel 
demonstrating the purity of the proteins used.   

(B) Bacterially expressed His-SNX27. Coomassie stained gel demonstrating the purity of the 
protein used.   

(C) Purified NLG2 CT interacts directly with SNX27 via a PDZ interaction. 1 μg WT and 
PDZ-AAA GST-NLG2 CT and GST were immobilised on glutathione sepharose beads 
before being incubated with 50 ng His-SNX27. GST pulldown samples were analysed by 
Western blotting as indicated.  

 

Figure 3. Loss of SNX27-retromer components decreases total levels of NLGs and of 
known SNX27-retomer cargoes in cortical neurons.  

(A, B) Western blots showing total levels of protein expression after SNX27 or VPS35 
knockdown. DIV 9-11 cortical neurons were infected with lentiviruses encoding shSNX27, 
shVPS35 or a control non-targeting shRNA. Neurons were lysed 7 days post-infection and 
Western blotted as indicated.  

(C, D, E) Quantification of total levels of protein expression after SNX27 or VPS35 
knockdown shown in (A). Data are shown as a percentage of the control (n = 5-7; one 
sample t-test, Bonferroni post-hoc test).  
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Data information: Error bars represent s.e.m. Statistical significance: *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001. 

 

Figure 4. Knockdown of SNX27 increases lysosomal degradation of NLG2 

(A) Representative images of NLG2 colocalisation with the lysosomal marker protein LAMP1 
in secondary dendrites. DIV 16 hippocampal neurons were transfected with shSNX27, 
shVPS35 or a non-targeting shRNA. Neurons were fixed, permeabilised and immunostained 
at DIV 21 for GFP (green), NLG2 (red) and LAMP1 (blue). Arrows highlight areas of 
colocalisation. Lower panels show enlargement of area indicated by box. Scale bar, 10 μm. 

(B) Quantification of NLG2 colocalisation with the lysosomal marker protein LAMP1 in 
secondary dendrites after SNX27 or VPS35 knockdown as shown in (A) using Pearson’s 
correlation (n = 23-24 from 3 independent dissections; One-way ANOVA).  

Data information: Error bars represent s.e.m. Statistical significance: *P < 0.05. 

 

Figure 5. Loss of SNX27-retromer function decreases NLG2 cluster size and density in 
hippocampal neurons.  

(A) Representative images of NLG2 clusters after SNX27 or VPS35 knockdown. DIV 16 
hippocampal neurons were transfected with shSNX27, shVPS35 or a non-targeting shRNA. 
Neurons were fixed and immunostained at DIV 21 for GFP (green), NLG2 (red) and DAPI 
(blue). Lower panels show enlargement of area indicated by box. Scale bar, 10 μm. 

(B) Quantification of NLG2 cluster density per 100 μm2 of secondary dendrite in 
hippocampal neurons after SNX27 or VPS35 knockdown as shown in (A) (n = 23-24 from 3 
independent dissections; One-way ANOVA).  

 (C) Quantification of NLG2 cluster size in μm2 in secondary dendrites of hippocampal 
neurons after SNX27 or VPS35 knockdown as shown in (A) (n = 1552 (shScrambled), 905 
(shSNX27) and 854 (shVPS35) from 3 independent dissections; Kruskall-Wallis).  

Data information: Error bars represent s.e.m. Statistical significance: **P < 0.01; ***P < 0.001; 

****P < 0.0001. 

 

Figure 6. Loss of SNX27-retromer function decreases gephyrin cluster size and 
density in hippocampal neurons.  

(A) Representative images of gephyrin clusters after SNX27 or VPS35 knockdown. DIV 16 
hippocampal neurons were transfected with shSNX27, shVPS35 or a non-targeting shRNA. 
Neurons were fixed and immunostained at DIV 21 for GFP (green), gephyrin (red) and DAPI 
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(blue). Lower panels show enlargement of area indicated by box. Scale bar, 10 μm. 

(B) Quantification of gephyrin cluster density per 100 μm2 of secondary dendrite of 
hippocampal neurons after SNX27 or VPS35 knockdown as shown in (A) (n = 23-24 from 3 
independent dissections; One-way ANOVA;).  

(C) Quantification of gephyrin cluster size in μm2 in secondary dendrites of hippocampal 
neurons after SNX27 or VPS35 knockdown as shown in (A) (n = 974 (shScrambled), 301 
(shSNX27) and 124 (shVPS35) from 3 independent dissections; Kruskall-Wallis).  

Data information: Error bars represent s.e.m. Statistical significance: **P < 0.01; ****P < 

0.0001. 

 

Figure 7. NLG2 knockdown decreases gephyrin cluster size and density in 
hippocampal neurons.  

(A) Representative images of NLG2 expression after SNX27 or VPS35 knockdown. DIV 16 
hippocampal neurons were transfected with shNLG2 or a non-targeting shRNA. Neurons 
were fixed and immunostained at DIV 21 for GFP (green), NLG2 (red) and DAPI (blue). 
Lower panels show enlargement of area indicated by box. Scale bar, 10 μm.  

(B) Quantification of NLG2 expression in secondary dendrites of hippocampal neurons after 
SNX27 or VPS35 knockdown as shown in (A). Data are presented as a percentage of NLG2 
expression in control neurons after transfection with a non-targeting shRNA (n = 8 from 1 
independent dissection; Student’s t-test).  

(C) Representative images of gephyrin clusters after NLG2 knockdown. DIV 16 hippocampal 
neurons were transfected with shNLG2 or a non-targeting shRNA. Neurons were fixed and 
immunostained at DIV 21 for GFP (green), gephyrin (red) and DAPI (blue). Lower panels 
show enlargement of area indicated by box. Scale bar, 10 μm.  

(D) Quantification of gephyrin cluster density per 100 μm2 of secondary dendrite of 
hippocampal neurons after SNX27 or VPS35 knockdown as shown in (A) (n = 24 from 3 
independent dissections; Student’s t-test).  

(E) Quantification of gephyrin cluster size in μm2 in secondary dendrites of hippocampal 
neurons after NLG2 knockdown as shown in (A) (n = 517 (shScrambled) and 174 (ShNLG2) 
from 3 independent dissections; Kolmogorov-Smirnov). 

Data information: Error bars represent s.e.m. Statistical significance: **P < 0.01; ***P < 0.001; 

****P < 0.0001. 

 

Supplementary Figure 1. The effects of SNX27 or VPS35 loss on NLG levels can be 
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rescued by re-expression of GFP-SNX27 or GFP-VPS35, respectively.   

(A) Neurons were infected at DIV 9 with lentiviruses encoding a control shRNA, SNX27 KD or 

a SNX27 KD virus also expressing shRNA-resistant GFP-SNX27. 7 days later, cells were 

lysed and subjected to Western blotting as indicated. Quantification of total NLG2 levels, as a 

percentage of the control, are shown in the graph on the right (n = 4; one sample t-test, 

Bonferroni post-hoc test). 

(B) Neurons were infected at DIV 9 with lentiviruses encoding a control shRNA, VPS35 KD or 

a VPS35 KD virus also expressing shRNA-resistant GFP-VPS35. 7 days later, cells were 

lysed and subjected to Western blotting as indicated. Quantification of total NLG1 and NLG3 

levels, as a percentage of the control, are shown in the graphs on the right (n = 8; one sample 

t-test, Bonferroni post-hoc test). 

Data information: Error bars represent s.e.m. Statistical significance: *P < 0.05; **P < 0.01; 

****P < 0.0001.  

 

Supplementary Figure 2. Loss of SNX27 causes a decrease in total NLG2 levels, and a 
corresponding decrease in surface-expressed NLG2.  

(A) Neurons were infected at DIV 9-11 with lentiviruses encoding a control shRNA, SNX27 

KD or VPS35 KD. 7 days later, surface proteins were labelled with membrane-impermeant 

biotin prior to cell lysis. Surface proteins were then isolated on streptavidin beads, before being 

subjected to Western blotting alongside whole lysate samples, as indicated.  

(B) Quantification of total NLG2 levels from (A), normalized to EGFR to control for protein 

loading, expressed as percentage of control. (n = 5; one sample t-test, Bonferroni post-hoc 

test). 

(C) Quantification of surface NLG2 levels from (A), normalized to EGFR to control for protein 

loading, expressed as percentage of control. (n = 5; one sample t-test, Bonferroni post-hoc 

test). 

Data information: Error bars represent s.e.m. Statistical significance: **P < 0.01.  

 

Supplementary Figure 3. Loss of SNX27 or VPS35 has no effect on LAMP1 cluster size 
or density. 

(A) LAMP1 cluster size and density in images from Figure 4A were analysed. (n = 23-24 
from 3 independent dissections; One-way ANOVA).  

Data information: Error bars represent s.e.m.  
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