4 research outputs found

    Catechol-O-methyltransferase genotype is associated with plasma total homocysteine levels and may increase venous thrombosis risk

    No full text
    A disturbed methylation has been proposed as a mechanism via which homocysteine is associated with diseases like vascular disease, neural tube defects and mental disorders. Catechol-O-methyltransferase (COMT) is involved in the S-adenosylmethionine-dependent methylation of catecholamines and catecholestrogens and in this way contributes to homocysteine synthesis. COMT dysfunction has been related to schizophrenia and breast cancer. We hypothesized that COMT dysfunction by virtue of functional genetic polymorphisms may affect plasma total homocysteine (tHcy). Our primary objective was to study the association between common COMT polymorphisms and tHcy. Secondly, we evaluated these polymorphisms as a risk factor for recurrent venous thrombosis. We obtained genotype data from four polymorphisms in the COMT gene (rs2097603, rs4633, rs4680 [324G>A] and rs174699) from 401 population-based controls. We performed haplotype analysis to investigate the association between common haplotypes and tHcy. In addition, we assessed the rs4680 variant as a genetic risk factor in a case-control study on recurrent venous thrombosis (n = 169). We identified a common haplotype that was significantly associated with tHcy levels. This effect was largely explained by the rs4680 variant, resulting in an increase in tHcy of 10.4% (95% CI 0.01 to 0.21, p = 0.03) for 324AA compared with 324GG subjects. Interestingly, we found that the 324AA genotype was more common in venous thrombosis patients (OR 1.61 [95% CI 0.97 to 2.65], p = 0.06) compared to control subjects. We show that the COMT rs4680 variant modulates tHcy, and might be associated with venous thrombosis risk as well

    Effect of genetic variation in the human S-adenosylhomocysteine hydrolase gene on total homocysteine concentrations and risk of recurrent venous thrombosis.

    No full text
    Contains fulltext : 57226.pdf (publisher's version ) (Closed access)Hyperhomocysteinemia is an independent and graded risk factor for arterial vascular disease and venous thrombosis. It is still debated via which mechanism homocysteine (Hcy) causes vascular disease. S-adenosylhomocysteine hydrolase (AHCY) catalyses the reversible hydrolysis of S-adenosylhomocysteine (AdoHcy) to Hcy. As an increase in AdoHcy, a strong inhibitor of many methyltransferases, is observed in hyperhomocysteinemic individuals, AdoHcy may play a role in the development of cardiovascular diseases by inhibiting transmethylation reactions. We sequenced the entire coding region and parts of the untranslated regions (UTRs) of the AHCY gene of 20 patients with recurrent venous thrombosis in order to identify genetic variation within this gene. We identified three sequence variants in the AHCY gene: a C > T transition in the 5' UTR (-34 bp C > T), a missense mutation in exon 2, which mandates an amino-acid conversion at codon 38 (112 C > T; Arg38Trp) and a silent mutation in exon 4 (390 C > T; Asp130Asp). We studied the effect of the first two variants on total plasma Hcy and venous thrombosis risk in a case-control study on recurrent venous thrombosis. The two polymorphisms under study seem to have no evident effect on tHcy. The adjusted relative risk of venous thrombosis associated with the 112CT genotype compared with 112CC individuals was 1.27 (95% CI 0.55-2.94), whereas the -34CT genotype confers a risk of 1.25 (95% CI 0.44-3.52) compared with the wild-type genotype at this locus. However, the wide confidence intervals do not allow firm conclusions to be drawn

    Molecular genetic analysis of the human dihydrofolate reductase gene: relation with plasma total homocysteine, serum and red blood cell folate levels.

    No full text
    Contains fulltext : 52674.pdf (publisher's version ) (Closed access)Disturbances in folate metabolism may increase the risk of certain malignancies, congenital defects and cardiovascular diseases. The gene dihydrofolate reductase (DHFR) is primarily involved in the reduction of dihydrofolate, generated during thymidylate synthesis, to tetrahydrofolate in order to maintain adequate amounts of folate for DNA synthesis and homocysteine remethylation. In order to reveal possible variation that may affect plasma total homocysteine (tHcy), serum folate and red blood cell (RBC) folate levels, we sequenced the DHFR coding region as well as the intron-exon boundaries and DHFR flanking regions from 20 Caucasian individuals. We identified a 9-bp repeat in the 5'-upstream region that partially overlapped with the 5'-untranslated region, and several single-nucleotide polymorphisms, all in non-coding regions. We screened subjects for the 9-bp repeat (n=417), as well as the recently reported 19-bp deletion in intron 1 (n=330), and assessed their associations with plasma tHcy, serum and RBC folate levels. The 19-bp del/del genotype was associated with a lower plasma tHcy (-14.4% [95% confidence interval: -23.5 to -4.5], P=0.006) compared with the wild-type genotype. This may suggest that intracellular folate levels are affected

    The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina bifida.

    No full text
    Contains fulltext : 51023.pdf (publisher's version ) (Closed access)The methionine synthase reductase (MTRR) enzyme restores methionine synthase (MTR) enzyme activity and therefore plays an essential role in homocysteine remethylation. In some studies, the 66A>G polymorphism in the MTRR gene was associated with increased neural tube defect (NTD) risk. Using a case-control design, we studied the association between the MTRR 66A>G polymorphism and spina bifida risk in 121 mothers, 109 spina bifida patients, 292 control women, and 234 pediatric controls. Possible interactions between the MTRR 66A>G variant and the MTR 2756A>G polymorphism, the MTHFR 677C>T variant, plasma vitamin B12, and plasma methylmalonic acid (MMA) levels were examined in the 121 mothers and 292 control women. Meta-analyses were conducted to set the results of the case-control study in the context of eligible literature on the relation between the MTRR 66A>G variant and NTD risk. Finally, a transmission disequilibrium test was performed for 82 complete mother-father-child triads to test for preferential transmission of the MTRR risk allele. In our case-control study, the MTRR 66A>G polymorphism had no influence on spina bifida risk in children [odds ratio (OR) 0.6, 95% confidence interval (CI) 0.4-1.1]. The MTRR 66GG genotype increased maternal spina bifida risk by 2.1-fold (OR 2.1, 95% CI 1.3-3.3). This risk became more pronounced in combination with the MTHFR 677TT genotype (OR 4.0, 95% CI 1.3-12.5). Moreover, we demonstrate a possible interaction between the MTRR 66GG genotype and high plasma MMA levels (OR 5.5, 95% CI 2.2-13.5). The meta-analyses demonstrated that the maternal MTRR 66GG genotype was associated with an overall 55% (95% CI 1.04-2.30) increase in NTD risk and that the MTRR 66GG genotype did not increase NTD risk in children (OR 0.96, 95% CI 0.46-2.01). These data show that the MTRR 66GG genotype is a maternal risk factor for spina bifida especially when intracellular vitamin B12 status is low
    corecore