217 research outputs found
Care for mental well-being of cancer patients:Support during and after primary treatment
Item does not contain fulltextCancer is associated with sometimes strong emotions. However, emotions are mostly adaptive - they help people adapt to cancer. Adaptive emotions do not need to be treated; instead, emotional support is key. Professional mental health care is indicated only when emotions are no longer adaptive. Oncologists, nurses, and especially general practitioners play an important role in identifying people who qualify for referral to mental health care. Prior mental health problems, a weak social support system, and a relatively stressful disease course or treatment are risk factors for cancer-related emotional problems. Training and the development of professional networks can contribute to optimizing the availability, accessibility and quality of supportive care for mental well-being during and after cancer treatment. In addition, providing good information to patients is important, to enable them to find supportive care
The Current Status of Immune Checkpoint Inhibitors in Neuro-Oncology:A Systematic Review
The introduction of immune checkpoint inhibitors (ICI), as a novel treatment modality, has transformed the field of oncology with unprecedented successes. However, the efficacy of ICI for patients with glioblastoma or brain metastases (BMs) from any tumor type is under debate. Therefore, we systematically reviewed current literature on the use of ICI in patients with glioblastoma and BMs. Prospective and retrospective studies evaluating the efficacy and survival outcomes of ICI in patients with glioblastoma or BMs, and published between 2006 and November 2019, were considered. A total of 88 studies were identified (n = 8 in glioblastoma and n = 80 in BMs). In glioblastoma, median progression-free (PFS) and overall survival (OS) of all studies were 2.1 and 7.3 months, respectively. In patients with BMs, intracranial responses have been reported in studies with melanoma and non-small-cell lung cancer (NSCLC). The median intracranial and total PFS in these studies were 2.7 and 3.0 months, respectively. The median OS in all studies for patients with brain BMs was 8.0 months. To date, ICI demonstrate limited efficacy in patients with glioblastoma or BMs. Future research should focus on increasing the local and systemic immunological responses in these patients
Plasma Ghrelin Levels Are Associated with Anorexia but Not Cachexia in Patients with NSCLC
Background and Aims: The ghrelin receptor is one of the new therapeutic targets in the cancer anorexia-cachexia syndrome. Previous studies revealed that plasma ghrelin levels were high in patients with anorexia nervosa and low in obese subjects. We studied to what extent ghrelin levels are related with anorexia and cachexia in patients with cancer. Materials and Methods: Fasted ghrelin levels were determined as well as anorexia and cachexia in patients with stage III/IV non-small cell lung cancer before chemotherapy. Total plasma ghrelin was measured by radioimmunoassay. Anorexia was measured with the FAACT-A/CS questionnaire (cut-off value ≤ 37). Cachexia was determined as > 5% weight loss (WL) in 6 months or > 2% WL in 6 months in combination with low BMI or low muscle mass. The Kruskal-Wallis test was performed to assess differences in plasma ghrelin levels between four groups: patients with (+) or without (-) anorexia (A) or cachexia (C). Multiple regression analyses were performed to assess differences in plasma ghrelin levels between patients C+ and C- and patients with A+ and A- (adjusted for age and sex). Results: Forty patients with stage III (33%) or stage IV (68%) were recruited, of which 50% was male. Mean age was 59.6 ± 10.3 years. Sixteen patients had no anorexia or cachexia (A-C-), seven patients had both anorexia and cachexia (A+C+), ten patients had anorexia without cachexia (A+C-) and seven patients had cachexia without anorexia (A-C+). The levels of total plasma ghrelin were significantly different between the four groups of patients with or without anorexia or cachexia (p = 0.032): the A+C- patients had significantly higher ghrelin levels [median (IQR): 1,754 (1,404-2,142) compared to the A-C+ patients 1,026 (952-1,357), p = 0.003]. A+ patients had significantly higher ghrelin levels compared A- patients (C+ and C- combined, β: 304, p = 0.020). Plasma ghrelin levels were not significantly different in C+ patients compared to C- patients (A+ and A- combined, β: -99, p = 0.450). Conclusions: Patients with anorexia had significantly higher ghrelin levels compared to patients without anorexia. We therefore hypothesize that patients with cancer anorexia might benefit from treatment with a ghrelin receptor agonist to prevent WL and deterioration in physical functioning
Data-driven prioritization and preclinical evaluation of therapeutic targets in glioblastoma
Background: Patients with glioblastoma (GBM) have a dismal prognosis, and there is an unmet need for new therapeutic options. This study aims to identify new therapeutic targets in GBM. Methods: mRNA expression data of patient-derived GBM (n = 1279) and normal brain tissue (n = 46) samples were collected from Gene Expression Omnibus and The Cancer Genome Atlas. Functional genomic mRNA profiling was applied to capture the downstream effects of genomic alterations on gene expression levels. Next, a class comparison between GBM and normal brain tissue was performed. Significantly upregulated genes in GBM were further prioritized based on (1) known interactions with antineoplastic drugs, (2) current drug development status in humans, and (3) association with biologic pathways known to be involved in GBM. Antineoplastic agents against prioritized targets were validated in vitro and in vivo. Results: We identified 712 significantly upregulated genes in GBM compared to normal brain tissue, of which 27 have a known interaction with antineoplastic agents. Seventeen of the 27 genes, including EGFR and VEGFA, have been clinically evaluated in GBM with limited efficacy. For the remaining 10 genes, RRM2, MAPK9 (JNK2, SAPK1a), and XIAP play a role in GBM development. We demonstrated for the MAPK9 inhibitor RGB-286638 a viability loss in multiple GBM cell culture models. Although no overall survival benefit was observed in vivo, there were indications that RGB-286638 may delay tumor growth. Conclusions: The MAPK9 inhibitor RGB-286638 showed promising in vitro results. Furthermore, in vivo target engagement studies and combination therapies with this compound warrant further exploration
Treatment outcome of patients with recurrent glioblastoma multiforme:A retrospective multicenter analysis
Glioblastoma multiforme (GBM) universally recurs with dismal prognosis. We evaluated the efficacy of standard treatment strategies for patients with recurrent GBM (rGBM). From two centers in the Netherlands, 299 patients with rGBM after first-line treatment, diagnosed between 2005 and 2014, were retrospectively evaluated. Four different treatment strategies were defined: systemic treatment (SYST), re-irradiation (RT), re-resection followed by adjuvant treatment (SURG) and best supportive care (BSC). Median OS for all patients was 6.5 months, and median PFS (excluding patients receiving BSC) was 5.5 months. Older age, multifocal lesions and steroid use were significantly associated with a shorter survival. After correction for confounders, patients receiving SYST (34.8%) and SURG (18.7%) had a significantly longer survival than patients receiving BSC (39.5%), 7.3 and 11.0 versus 3.1 months, respectively [HR 0.46 (p <0.001) and 0.36 (p <0.001)]. Median survival for patients receiving RT (7.0%) was 9.2 months, but this was not significantly different from patients receiving BSC (p = 0.068). Patients receiving SURG compared to SYST had a longer PFS (9.0 vs. 4.3 months, respectively; p <0.001), but no difference in OS was observed. After adjustments for confounders, patients with rGBM selected for treatment with SURG or SYST do survive significantly longer than patients who are selected for BSC based on clinical parameters. The value of reoperation versus systemic treatment strategies needs further investigation.</p
The STELLAR trial:a phase II/III randomized trial of high-dose, intermittent sunitinib in patients with recurrent glioblastoma
Previously, the tyrosine kinase inhibitor sunitinib failed to show clinical benefit in patients with recurrent glioblastoma. Low intratumoural sunitinib accumulation in glioblastoma patients was reported as a possible explanation for the lack of therapeutic benefit. We designed a randomized phase II/III trial to evaluate whether a high-dose intermittent sunitinib schedule, aimed to increase intratumoural drug concentrations, would result in improved clinical benefit compared to standard treatment with lomustine. Patients with recurrent glioblastoma were randomized 1:1 to high-dose intermittent sunitinib 300 mg once weekly (Q1W, part 1) or 700 mg once every two weeks (Q2W, part 2) or lomustine. The primary end-point was progression-free survival. Based on the pre-planned interim analysis, the trial was terminated for futility after including 26 and 29 patients in parts 1 and 2. Median progression-free survival of sunitinib 300 mg Q1W was 1.5 months (95% CI 1.4–1.7) compared to 1.5 months (95% CI 1.4–1.6) in the lomustine arm (P = 0.59). Median progression-free survival of sunitinib 700 mg Q2W was 1.4 months (95% CI 1.2–1.6) versus 1.6 months (95% CI 1.3–1.8) for lomustine (P = 0.70). Adverse events (≥grade 3) were observed in 25%, 21% and 31% of patients treated with sunitinib 300 mg Q1W, sunitinib 700 mg Q2W and lomustine, respectively (P = 0.92). To conclude, high-dose intermittent sunitinib treatment failed to improve the outcome of patients with recurrent glioblastoma when compared to standard lomustine therapy. Since lomustine remains a poor standard treatment strategy for glioblastoma, innovative treatment strategies are urgently needed.</p
Serial FLT PET imaging to discriminate between true progression and pseudoprogression in patients with newly diagnosed glioblastoma:a long-term follow-up study
Purpose: Response evaluation in patients with glioblastoma after chemoradiotherapy is challenging due to progressive, contrast-enhancing lesions on MRI that do not reflect true tumour progression. In this study, we prospectively evaluated the ability of the PET tracer 18F-fluorothymidine (FLT), a tracer reflecting proliferative activity, to discriminate between true progression and pseudoprogression in newly diagnosed glioblastoma patients treated with chemoradiotherapy. Methods: FLT PET and MRI scans were performed before and 4 weeks after chemoradiotherapy. MRI scans were also performed after three cycles of adjuvant temozolomide. Pseudoprogression was defined as progressive disease on MRI after chemoradiotherapy with stabilisation or reduction of contrast-enhanced lesions after three cycles of temozolomide, and was compared with the disease course during long-term follow-up. Changes in maximum standardized uptake value (SUVmax) and tumour-to-normal uptake ratios were calculated for FLT and are presented as the mean SUVmax for multiple lesions. Results: Between 2009 and 2012, 30 patients were included. Of 24 evaluable patients, 7 showed pseudoprogression and 7 had true progression as defined by MRI response. FLT PET parameters did not significantly differ between patients with true progression and pseudoprogression defined by MRI. The correlation between change in SUVmax and survival (p = 0.059) almost reached the standard level of statistical significance. Lower baseline FLT PET uptake was significantly correlated with improved survival (p = 0.022). Conclusion: Baseline FLT uptake appears to be predictive of overall survival. Furthermore, changes in SUVmax over time showed a tendency to be associated with improved survival. However, further studies are necessary to investigate the ability of FLT PET imaging to discriminate between true progression and pseudoprogression in patients with glioblastoma
- …