1,001 research outputs found
Magnetophotoluminescence of negatively charged excitons in narrow quantum wells
We present the results of photoluminescence experiments on the negatively charged exciton X- in GaAs/AlxGa1-xAs quantum wells (QW) in high magnetic fields (≤50 T). Three different QW widths are used here: 100, 120, and 150 Å. All optically allowed transitions of X- are observed, enabling us to experimentally verify its energy-level diagram. All samples behave consistently with this diagram. We have determined the binding energy Eb of the singlet and triplet state of X- between 23 and 50 T for the 120 and 150 Å QW, while only the triplet Eb is observed for the 100 Å QW. A detailed comparison with recent theoretical calculations shows an agreement for all samples across this entire field range
Magnetic-field dependence of the spin states of the negatively charged exciton in GaAs quantum wells
We present high-field (<50 T) photoluminescence measurements of the binding energy of the singlet and triplet states of the negatively charged exciton in a 200-Angstrom quantum well. Comparing our data with those of other groups and with theoretical predictions we clearly show how the singlet, "bright" and "dark" triplet states may be identified according to the high-field dependence of their binding energies. We demonstrate that a very consistent behavior of the binding energy in a magnetic field has been observed in quantum wells of different widths by different groups and conclude that the triplet state found in this, as well as nearly all other experiments, is undoubtedly the bright triplet. By combining our data with that in the literature we are able to present the generic form of the binding energy of the spin states of the charged exciton in a magnetic field, which reveals the predicted singlet to dark triplet ground state transition at about 20 T
Optical imaging of resonant electrical carrier injection into individual quantum dots
We image the micro-electroluminescence (EL) spectra of self-assembled InAs
quantum dots (QDs) embedded in the intrinsic region of a GaAs p-i-n diode and
demonstrate optical detection of resonant carrier injection into a single QD.
Resonant tunneling of electrons and holes into the QDs at bias voltages below
the flat-band condition leads to sharp EL lines characteristic of individual
QDs, accompanied by a spatial fragmentation of the surface EL emission into
small and discrete light- emitting areas, each with its own spectral
fingerprint and Stark shift. We explain this behavior in terms of Coulomb
interaction effects and the selective excitation of a small number of QDs
within the ensemble due to preferential resonant tunneling paths for carriers.Comment: 4 page
Resistance Noise Scaling in a Dilute Two-Dimensional Hole System in GaAs
We have measured the resistance noise of a two-dimensional (2D)hole system in
a high mobility GaAs quantum well, around the 2D metal-insulator transition
(MIT) at zero magnetic field. The normalized noise power increases
strongly when the hole density p_s is decreased, increases slightly with
temperature (T) at the largest densities, and decreases strongly with T at low
p_s. The noise scales with the resistance, , as for a
second order phase transition such as a percolation transition. The p_s
dependence of the conductivity is consistent with a critical behavior for such
a transition, near a density p* which is lower than the observed MIT critical
density p_c.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Real-space imaging of quantum Hall effect edge strips
We use dynamic scanning capacitance microscopy (DSCM) to image compressible
and incompressible strips at the edge of a Hall bar in a two-dimensional
electron gas (2DEG) in the quantum Hall effect (QHE) regime. This method gives
access to the complex local conductance, Gts, between a sharp metallic tip
scanned across the sample surface and ground, comprising the complex sample
conductance. Near integer filling factors we observe a bright stripe along the
sample edge in the imaginary part of Gts. The simultaneously recorded real part
exhibits a sharp peak at the boundary between the sample interior and the
stripe observed in the imaginary part. The features are periodic in the inverse
magnetic field and consistent with compressible and incompressible strips
forming at the sample edge. For currents larger than the critical current of
the QHE break-down the stripes vanish sharply and a homogeneous signal is
recovered, similar to zero magnetic field. Our experiments directly illustrate
the formation and a variety of properties of the conceptually important QHE
edge states at the physical edge of a 2DEG.Comment: 7 page
Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots
The authors report the temperature dependence of the near-infrared photoluminescence (PL) emission from thiol-capped PbS quantum dots. The high thermal stability of the PL allows the authors to study the thermal broadening of the dot emission over an extended temperature range (4-300 K). The authors show that the linewidth of the dot PL emission is strongly enhanced at temperatures above 150 K. This behavior is attributed to dephasing of the quantum electronic states by carrier interaction with longitudinal optical phonons. The authors' data also indicate that the strength of the carrier-phonon coupling is larger in smaller dots. © 2007 American Institute of Physics
- …
