12,845 research outputs found

    Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments

    Full text link
    We consider a population living in a patchy environment that varies stochastically in space and time. The population is composed of two morphs (that is, individuals of the same species with different genotypes). In terms of survival and reproductive success, the associated phenotypes differ only in their habitat selection strategies. We compute invasion rates corresponding to the rates at which the abundance of an initially rare morph increases in the presence of the other morph established at equilibrium. If both morphs have positive invasion rates when rare, then there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when rare, then it is asymptotically displaced by the other morph under all initial conditions where both morphs are present. We refine the characterization of an evolutionary stable strategy for habitat selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary and sufficient condition for the existence of an ESS that uses all patches and determine when using a single patch is an ESS. We also provide an explicit formula for the ESS when there are two habitat types. We show that adding environmental stochasticity results in an ESS that, when compared to the ESS for the corresponding model without stochasticity, spends less time in patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing a spatial form of bet hedging.Comment: Revised in light of referees' comments, Published on-line Journal of Mathematical Biology 2014 http://link.springer.com/article/10.1007/s00285-014-0824-

    Stochastic population growth in spatially heterogeneous environments: The density-dependent case

    Full text link
    This work is devoted to studying the dynamics of a structured population that is subject to the combined effects of environmental stochasticity, competition for resources, spatio-temporal heterogeneity and dispersal. The population is spread throughout nn patches whose population abundances are modelled as the solutions of a system of nonlinear stochastic differential equations living on [0,∞)n[0,\infty)^n. We prove that rr, the stochastic growth rate of the total population in the absence of competition, determines the long-term behaviour of the population. The parameter rr can be expressed as the Lyapunov exponent of an associated linearized system of stochastic differential equations. Detailed analysis shows that if r>0r>0, the population abundances converge polynomially fast to a unique invariant probability measure on (0,∞)n(0,\infty)^n, while when r<0r<0, the population abundances of the patches converge almost surely to 00 exponentially fast. This generalizes and extends the results of Evans et al (2014 J. Math. Biol.) and proves one of their conjectures. Compared to recent developments, our model incorporates very general density-dependent growth rates and competition terms. Furthermore, we prove that persistence is robust to small, possibly density dependent, perturbations of the growth rates, dispersal matrix and covariance matrix of the environmental noise. Our work allows the environmental noise driving our system to be degenerate. This is relevant from a biological point of view since, for example, the environments of the different patches can be perfectly correlated. As an example we fully analyze the two-patch case, n=2n=2, and show that the stochastic growth rate is a decreasing function of the dispersion rate. In particular, coupling two sink patches can never yield persistence, in contrast to the results from the non-degenerate setting treated by Evans et al.Comment: 43 pages, 1 figure, edited according to the suggestion of the referees, to appear in Journal of Mathematical Biolog
    • …
    corecore