6,417 research outputs found

    The Effects of Changing Membrane Compositions and Internal Electrolytes on the Respon of Potassium Ion Sensor

    Full text link
    A study on the changing of membrane compositions and internal solution towards the response potassium ion sensor was carried out. Potassium ion sensor based on photocured cross linking poly(n-butyl acrylate) membranes with varying composition of valinomycin (val), sodium tetrakis [3.5-bis(trifluoro-methyl) phenyl] borat (NaTFPB), types ion of internal solution were investigated. Effects of varying composition of val, NaTFPB, types and concentration of internal solution were observed on potassium ion sensor. The effect of higher val composition was lower LOD, wider linear range, lower sensitivity but increase selectivity. Higher NaTFPB compositions lead to lower LOD, higher sensitivity and selectivity. The effect of changing internal electrolyte lead to lower LOD, wider linear response range and higher selectivity according to internal electrolyte consisting Na+, Ca2+ and K+, and sensitivity increase following internal electrolyte with Ca2+, K+ and Na+

    OPTIMIZATION OF SCREEN PRINTED REFERENCE ELECTRODE BASED ON CHARGE BALANCE AND POLY (BUTYL ACRYLATE) PHOTOCURABLE MEBRANE

    Get PDF
    This research focus on transforming the traditional design of reference electrode into all-solid-state reference electrode front-end using Ag/AgCl screen- printed electrodes. By replacing the internal reference solution of a traditional reference electrode by a solid photocurable membrane, an all-solid-state reference electrode can be achieved. The solid-state screen-printed reference electrode was designed using a photocurable acrylic film containing immobilized sodium tetrakis [3,5-bis(trifluoromethyl)phenyl] borate (NaTFPB) and trimethylocthylammonium chloride (TOMA-Cl). An optimum ratio of NaTFPB:TOMA-Cl = 1:1 produced a stable reference electrode. In the anions interference studies, all anions i.e. NO3-, Cl-, Br- and SO42- does not give effect to the SPRE except perchlorate anions. The all-solid-state reference electrodes was applied to the detection of potassium ions and ammonium ions. Validation of the all-screen-printed reference electrode was performed with reference electrode standard gel type. The validation results showed that all-solid-state screen-printed reference electrode demonstrated performance that was comparable to standard reference electrode

    OPTIMIZATION OF SCREEN PRINTED REFERENCE ELECTRODE BASED ON CHARGE BALANCE AND POLY (BUTYL ACRYLATE) PHOTOCURABLE MEBRANE

    Get PDF
    This research focus on transforming the traditional design of reference electrode into all-solid-state reference electrode front-end using Ag/AgCl screen- printed electrodes. By replacing the internal reference solution of a traditional reference electrode by a solid photocurable membrane, an all-solid-state reference electrode can be achieved. The solid-state screen-printed reference electrode was designed using a photocurable acrylic film containing immobilized sodium tetrakis [3,5-bis(trifluoromethyl)phenyl] borate (NaTFPB) and trimethylocthylammonium chloride (TOMA-Cl). An optimum ratio of NaTFPB:TOMA-Cl = 1:1 produced a stable reference electrode. In the anions interference studies, all anions i.e. NO3-, Cl-, Br- and SO42- does not give effect to the SPRE except perchlorate anions. The all-solid-state reference electrodes was applied to the detection of potassium ions  and ammonium ions. Validation of the all-screen-printed reference electrode was performed with reference electrode standard gel type. The validation results showed that all-solid-state screen-printed reference electrode demonstrated performance that was comparable to standard reference electrode.

    Generalized thermo vacuum state derived by the partial trace method

    Full text link
    By virtue of the technique of integration within an ordered product (IWOP) of operators we present a new approach for deriving generalized thermo vacuum state which is simpler in form that the result by using the Umezawa-Takahashi approach, in this way the thermo field dynamics can be developed. Applications of the new state are discussed.Comment: 5 pages, no figure, revtex

    Existence of black holes in Friedmann-Robertson-Walker universe dominated by dark energy

    Get PDF
    We study the existence of black holes in a homogeneous and isotropic expanding Friedmann-Robertson-Walker (FRW) universe dominated by dark energy. We show that black holes can exist in such a universe by considering some specific McVittie solutions. Although these solutions violate all three energy conditions, the FRW background does satisfy the weak energy condition.Comment: revetex format, 2 figures adde

    Coupled KdV equations derived from atmospherical dynamics

    Full text link
    Some types of coupled Korteweg de-Vries (KdV) equations are derived from an atmospheric dynamical system. In the derivation procedure, an unreasonable yy-average trick (which is usually adopted in literature) is removed. The derived models are classified via Painlev\'e test. Three types of τ\tau-function solutions and multiple soliton solutions of the models are explicitly given by means of the exact solutions of the usual KdV equation. It is also interesting that for a non-Painlev\'e integrable coupled KdV system there may be multiple soliton solutions.Comment: 19 pages, 2 figure

    Detecting extreme mass ratio inspiral events in LISA data using the Hierarchical Algorithm for Clusters and Ridges (HACR)

    Get PDF
    One of the most exciting prospects for the Laser Interferometer Space Antenna (LISA) is the detection of gravitational waves from the inspirals of stellar-mass compact objects into supermassive black holes. Detection of these sources is an extremely challenging computational problem due to the large parameter space and low amplitude of the signals. However, recent work has suggested that the nearest extreme mass ratio inspiral (EMRI) events will be sufficiently loud that they might be detected using computationally cheap, template-free techniques, such as a time-frequency analysis. In this paper, we examine a particular time-frequency algorithm, the Hierarchical Algorithm for Clusters and Ridges (HACR). This algorithm searches for clusters in a power map and uses the properties of those clusters to identify signals in the data. We find that HACR applied to the raw spectrogram performs poorly, but when the data is binned during the construction of the spectrogram, the algorithm can detect typical EMRI events at distances of up to 2.6\sim2.6Gpc. This is a little further than the simple Excess Power method that has been considered previously. We discuss the HACR algorithm, including tuning for single and multiple sources, and illustrate its performance for detection of typical EMRI events, and other likely LISA sources, such as white dwarf binaries and supermassive black hole mergers. We also discuss how HACR cluster properties could be used for parameter extraction.Comment: 21 pages, 11 figures, submitted to Class. Quantum Gravity. Modified and shortened in light of referee's comments. Updated results consider tuning over all three HACR thresholds, and show 10-15% improvement in detection rat
    corecore