28 research outputs found

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Creation of quantized vortices at the lambda transition in liquid Helium-4

    Get PDF
    A fast (ca. 3 ms) adiabatic expansion of a volume of liquid He-4 through the lambda transition is being used to study the nature of the transition and to model the cosmological false vacuum to true vacuum phase transition of the early universe. Preliminary results are reported showing that, in accordance with theoretical predictions by W H Zurek (Nature 317, 505; 1985), there is copious production of quantized vortex lines, which represent the superfluid analogue of cosmic strings. The line density after the expansion appears to decay in two distinct stages, with a fast decay being followed by a much slower one, in agreement with earlier work on the decay of quantum turbulence created in thermal counterflow. Extrapolation of the initial fast decay suggests an initial line density, immediately following the expansion, of ca. 10 to power 7 per square cm. Smaller, but still substantial, vortex densities are also found to occur when the system is expanded from below the lambda transition, and the physical implications are discussed

    Quantum turbulence in 4He, oscillating grids, and where do we go next?

    Get PDF
    Experimental approaches to the study of quantum turbulence (QT) in superfluid 4He in the low temperature limit, where the normal fluid density is effectively zero, are considered. A succinct general introduction covers liquid 4He, superfluidity, critical velocities for the onset of dissipation, quantized vortex lines and QT. The QT can be created mechanically by the oscillation of wires or grids above characteristic critical velocities. The interesting dynamics of the oscillating grid are discussed. It exhibits an enhanced effective mass due to backflow, as expected from classical hydrodynamics. It is found that the critical velocity attributable to the onset of QT production rises with increasing temperature. Oscillating objects like grids or wires create QT that is not well-characterized in terms of length scale, and the QT is not spatially homogeneous. The QT can be detected by the trapping of negative ions on vortex cores. Although the corresponding capture cross-section has not yet been measured, it is evidently very small, so that the technique cannot be expected to be a very sensitive one. In the future it is hoped to create well-characterized, homogeneous QT by means of a drawn grid. Improved sensitivity in the detection of QT is being sought through calorimetric techniques that monitor the temperature rise of the liquid caused by the decay of the vortex lines

    Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination*

    No full text
    A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cross-tolerance of low-temperature pretreatment to high-temperature stress and the possible involvement of reactive oxygen species (ROS) scavenging enzymes in the cross-tolerance. After pretreatment at 0 °C for different periods of time, barley seeds were germinated at 35 °C, and the content of malondialdehyde (MDA) and the activities of ROS scavenging enzymes were measured by a spectrophotometer analysis. The results showed that barley seed germinated very poorly at 35 °C, and this inhibitive effect could be overcome by pretreatment at 0 °C. The MDA content varied, depending on the temperature at which seeds germinated, while barley seeds pretreated at 0 °C did not change the MDA content. Compared with seeds germinated directly at 35 °C, the seeds pretreated first at 0 °C and then germinated at 35 °C had markedly increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The SOD and APX activities of seeds germinated at 35 °C after 0 °C-pretreatment were even substantially higher than those at 25 °C, and GR activity was similar to that at 25 °C, at which the highest germination performance of barley seeds was achieved. These results indicate that low-temperature pretreatment can markedly increase the tolerance of barley seed to high temperature during germination, this being related to the increase in ROS scavenging enzyme activity. This may provide a new method for increasing seed germination under stress environments, and may be an excellent model system for the study of cross-tolerance
    corecore