175 research outputs found

    The relationship between silicon isotope fractionation in sponges and silicic acid concentration : modern and core-top studies of biogenic opal

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 81 (2012): 1-12, doi:10.1016/j.gca.2011.12.010.Recent work has shown the silicon isotope composition, denoted by δ30Si, of deep-sea sponges reflects the concentration of ambient silicic acid (Si(OH)4) in seawater. However, existing calibrations are based predominantly on living sponges collected from the Southern Ocean. These data cannot, however, be used to determine whether other parameters that correlate with silicic acid in the Southern Ocean, such as temperature and salinity, influence δ30Si of sponges. Furthermore, the published data do not demonstrate whether disaggregated core-top sedimentary spicules preserve the primary δ30Si signal recorded in living sponges. Here, we address both of these issues. We refine and widen the existing calibration by including a global distribution of modern sponges. In addition, we provide the first systematic calibration from spicules picked from core-top sediments that covers sites from different ocean basins. The relationship between Si(OH)4 and δ30Si in sponge spicules is the same in different ocean basins, between specimens that grew in different temperature and salinity conditions. Our core-top data agree well with the modern sponge calibration indicating there are no significant post-depositional effects or early diagenetic overprints. These two new datasets support the assertion that sponge δ30Si can be used as a proxy for silicic acid concentrations in the past.This work was funded by the National Science Foundation (MGG grants 1029986; OPP ANT grants 0944474 and 0902957) and with the support of a WHOI Doherty Scholarship

    Silicon isotopes in Antarctic sponges : an interlaboratory comparison

    Get PDF
    Cycling of deepwater silicon (Si) within the Southern Ocean, and its transport into other ocean basins, may be an important player in the uptake of atmospheric carbon, and global climate. Recent work has shown that the Si isotope (denoted by δ29Si or δ30Si) composition of deep sea sponges reflects the availability of dissolved Si during growth, and is a potential proxy for past deep and intermediate water silicic acid concentrations. As with any geochemical tool, it is essential to ensure analytical precision and accuracy, and consistency between methodologies and laboratories. Analytical bias may exist between laboratories, and sponge material may have matrix effects leading to offsets between samples and standards. Here, we report an interlaboratory evaluation of Si isotopes in Antarctic and sub-Antarctic sponges. We review independent methods for measuring Si isotopes in sponge spicules. Our results show that separate subsamples of non-homogenized sponges measured by three methods yield isotopic values within analytical error for over 80% of specimens. The relationship between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during biomineralization. Sponge Si isotope analyses show potential as palaeoceaongraphic archives, and we suggest Southern Ocean sponge material would form a useful additional reference standard for future spicule analyses

    Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation

    Get PDF
    Today’s Sargasso Sea is nutrient starved, except for episodic upwelling events caused by wind-driven winter mixing and eddies. Enhanced diatom opal burial in Sargasso Sea sediments indicates that silicic acid, a limiting nutrient today, may have been more available in subsurface waters during Heinrich Stadials, millennial-scale climate perturbations of the last glacial and deglaciation. Here we use the geochemistry of opal-forming organisms from different water depths to demonstrate changes in silicic acid supply and utilization during the most recent Heinrich Stadial. We suggest that during the early phase (17.5–18 ka), wind-driven upwelling replenished silicic acid to the subsurface, resulting in low Si utilization. By 17 ka, stratification reduced the surface silicic acid supply leading to increased Si utilization efficiency. This abrupt shift in Si cycling would have contributed to high regional carbon export efficiency during the recent Heinrich Stadial, despite being a period of increasing atmospheric CO2

    Physical weathering intensity controls bioavailable primary iron(II) silicate content in major global dust sources

    Get PDF
    The speciation of iron (Fe) reaching the ocean, for instance in wind‐blown dust and coastal sediments, impacts its bioavailability to phytoplankton and its impact on atmospheric carbon dioxide (CO2) and climate. For dust reaching the Southern Ocean, primary Fe(II) silicates that are physically weathered from bedrock are highly bioavailable compared to more chemically weathered, Fe(III)‐rich species, suggesting that weathering in dust source regions impacts the bioavailable Fe supply. However, this phenomenon has not been studied in other important terrestrial Fe sources, where weathering regimes and source geology vary. Here, we use Fe X‐ray absorption spectroscopy on marine sediment cores to show that major global dust and sediment sources impacted by high physical weathering contain abundant primary minerals and thus are overlooked as a source of highly bioavailable Fe globally. Thus, it is important to consider the role of physical versus chemical weathering in Fe fertilization and biotic CO2 cycling

    The cadmium-phosphate relationship in brine: biological versus physical control over micronutrients in sea ice environments

    Get PDF
    Despite supporting productive ecosystems in the high latitudes, the relationship between macro- and micronutrients in sea ice environments and their impact on surface productivity is poorly documented. In seawater, the macronutrient phosphate and the micronutrient cadmium follow similar distributions, which are controlled by biological processes in surface waters. We investigated cadmium and phosphate in sea ice brine, and the biological and physical processes controlling their distribution. Cadmium concentrations in sea ice brine ranged from 0.092.4 nmol kg-1, and correlated well with salinity. Our results show that micronutrients in sea ice are most probably sourced from the seawater from which it froze rather than external sources such as atmospheric deposition. The weak correlation between sea ice cadmium and phosphate, and the positive relationship between cadmium and biomass, suggests against biological uptake being a principal control over micronutrient distribution even in a highly productive setting. Instead, brine expulsion and dilution play a dominant role in cadmium distribution in sea ice. Nutrient dilution within brine channels during melting, and contrasting sea ice and open water phytoplankton populations, suggests that late spring sea ice is not a significant source of nutrients or biomass to seawater. We suggest that future changes in sea ice seasonality may impact nutrient distribution and Antarctic marine ecosystems. © 2009 Antarctic Science Ltd

    Stylasterid corals: a new paleotemperature archive

    Get PDF
    Stylasterids are a ubiquitous deep-sea coral taxon that build their skeletons from either calcite, aragonite, or both. Yet, robust geochemical proxy data from these corals are limited. In this study, 95 modern stylasterids, spanning a wide range of depths (63 to 2894 m) and ambient seawater temperatures (0 to 17 °C), were tested for their potential use as paleoceanographic archives. Stable oxygen and carbon isotopic composition (O and C) were measured from the main trunk of all specimens and five specimens were further sub-sampled to assess internal chemical variability. The isotope data show non-equilibrium precipitation from seawater for both O and C, with the growing tips of colonies yielding the isotopically lowest values. Overall, the calcitic corals showed lower isotope values for O and C than aragonitic specimens. Within the aragonite corals, we present a O:temperature calibration that exhibits a significant linear relationship with the equation Ocoral-seawater = −0.22(°C) + 3.33(±0.06) across a temperature range of 0 to 30 °C, using samples from this study and published data. This work highlights the potential application of stylasterid coral O data to reconstruct paleo seawater temperature

    Silicon isotopes in Arctic and sub-Arctic glacial meltwaters:The role of subglacial weathering in the silicon cycle

    Get PDF
    Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary productivity, contributingto atmosphericCO2 removal.We present the current understanding of Si cycling in glacial systems,focusingontheSiisotope(δ30Si)composition of glacial meltwaters. We combine existing glacial δ30Si data with new measurements from 20 subArctic glaciers, showing that glacial meltwaters consistently export isotopically light DSi compared with non-glacial rivers (+0.16‰ versus +1.38‰). Glacial δ30SiASi composition ranges from −0.05‰ to −0.86‰ but exhibits low seasonal variability. Silicon fluxes and δ30Si composition from glacial systems are not commonly included in global Si budgets and isotopic mass balance calculations at present. We discuss outstanding questions, including the formation mechanism of ASi and the export of glacial nutrients from fjords. Finally, we provide a contextual framework for the recent advances in our understanding of subglacial Si cycling and highlight critical research avenues for assessing potential future changes in these environments
    corecore