57 research outputs found

    Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens

    Get PDF
    P1B-ATPases are decisive for metal accumulation phenotypes, but mechanisms of their regulation are only partially understood. Here, we studied the Cd/Zn transporting ATPases NcHMA3 and NcHMA4 from Noccaea caerulescens as well as AhHMA3 and AhHMA4 from Arabidopsis halleri. Protein biochemistry was analyzed on HMA4 purified from roots of N. caerulescens in active state. Metal titration of NcHMA4 protein with an electrochromic dye as charge indicator suggested that HMA4 reaches maximal ATPase activity when all internal high-affinity Cd2+ binding sites are occupied. Although HMA4 was reported to be mainly responsible for xylem loading of heavy metals for root to shoot transport, the current study revealed high expression of NcHMA4 in shoots as well. Further, there were additional 20 and 40 kD fragments at replete Zn2+ and toxic Cd2+, but not at deficient Zn2+ concentrations. Altogether, the protein level expression analysis suggested a more multifunctional role of NcHMA4 than previously assumed. Organ-level transcription analysis through quantitative PCR of mRNA in N. caerulescens and A. halleri confirmed the strong shoot expression of both NcHMA4 and AhHMA4. Further, in shoots NcHMA4 was more abundant in 10 μM Zn2+ and AhHMA4 in Zn2+ deficiency. In roots, NcHMA4 was up-regulated in response to deficient Zn2+ when compared to replete Zn2+ and toxic Cd2+ treatment. In both species, HMA3 was much more expressed in shoots than in roots, and HMA3 transcript levels remained rather constant regardless of Zn2+ supply, but were up-regulated by 10 μM Cd2+. Analysis of cellular expression by quantitative mRNA in situ hybridisation showed that in A. halleri, both HMA3 and HMA4 mRNA levels were highest in the mesophyll, while in N. caerulescens they were highest in the bundle sheath of the vein. This is likely related to the different final storage sites for hyperaccumulated metals in both species: epidermis in N. caerulescens, mesophyll in A. halleri

    Entre las causas y las razones: sobre la explicación social y sus límites

    Get PDF
    "Este texto es el resultado de las reflexiones teóricas suscitadas por mi participación en el proyecto SEC96-0639 del Plan Nacional de I+D, dirigido por Ludolfo Paramio. No quiero dejar de agradecer los detallados comentarios de Antonio Niño Rodríguez y Leopoldo Moscoso Sarabia a los dos borradores previos".ME

    Synchrotron X-rays reveal the modes of Fe binding and trace metal storage in the brown algae Laminaria digitata and Ectocarpus siliculosus

    Get PDF
    Funding Funding from the UK Natural Environment Research Council (NERC) through grants NE/D521522/1, NE/F012705/1, and Oceans 2025 (WP4.5) programs to FCK; the National Science Foundation (CHE-1664657) and the National Oceanic & Atmospheric Administration to CJC and FCK; and the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011) is gratefully acknowledged by FCK. PK would like to thank the European Commission for her postdoctoral fellowship (EC-Horizon 2020-MSCA-IF, grant no. 839151). AM and HK thank the Ministry of Education, Youth and Sports of the Czech Republic with co-financing from the European Union (grant "KOROLID", CZ.02.1.01/0.0/0.0/15_003/0000336) and the Czech Academy of Sciences (RVO: 60077344). AM, FK and HK are grateful for support from the European Community in the framework of the Access to Research Infrastructure Action of the Improving Human Potential Program to the ESRF (experiment LS-2772, beamline ID16AI). AM and HK thank Czech Government funding (Členství v European Synchrotron Radiation Facility, MŠMT – 33914/2017-1) supporting their work at the ESRF. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR – 1634415) and Department of EnergyGeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic.Peer reviewedPublisher PD

    Vertical Distribution of Epibenthic Freshwater Cyanobacterial Synechococcus spp. Strains Depends on Their Ability for Photoprotection

    Get PDF
    Epibenthic cyanobacteria often grow in environments where the fluctuation of light intensity and quality is extreme and frequent. Different strategies have been developed to cope with this problem depending on the distribution of cyanobacteria in the water column. and either constant or enhanced levels of carotenoids were assayed in phycocyanin-rich strains collected from 1.0 and 0.5 m water depths. Protein analysis revealed that while the amount of biliproteins remained constant in all strains during light stress and recovery, the amount of D1 protein from photosystem II reaction centre was strongly reduced under light stress conditions in strains from 7.0 m and 1.0 m water depth, but not in strains collected from 0.5 m depth. spp. strains, depending on their genetically fixed mechanisms for photoprotection

    Rezension: Sabine Achour, Siegfried Frech, Peter Massing, Veit Straßner (Hrsg.): Methodentraining für den Politikunterricht

    Get PDF

    Photometric method for the quantification of chlorophylls and their derivatives in complex mixtures : fitting with Gauss-Peak Spectra

    No full text
    Accurate quantification of pigments in mixtures is essential in all cases in which separation of pigments by chromatography is impracticable for one reason or another. An example is the analysis of in vivo formation of heavy metal-substituted chlorophylls in heavy metalstressed plants. We describe here a novel, accurate UV/ VIS spectrophotometric method for the quantification of individual chlorophyll derivatives in complex mixtures, which has the potential for universal applicability for mixtures difficult to separate. The method is based on the description of each pigment spectrum by a series of Gaussian peaks. A sample spectrum is then fitted by a linear combination of these Gauss-peak spectra including an automatic correction of wavelength inaccuracy and baseline instability of the spectrometer as well as a correction of the widening of absorbance peaks in more concentrated pigment solutions. The automatic correction of peak shifts can also partially correct shifts caused by processes like allomerization. In this paper, we present the Gauss-peak spectra for Mg-chlorophyll a, b, c, pheophytin a, b, c, Cu-chlorophyll a, b, c, and Znchlorophyll a in acetone; Mg-chlorophyll a, b, pheophytin a, b, Cu-chlorophyll a, b, allomerized Cu-chlorophyll a, b, and Zn-chlorophyll a, b in cyclohexane; Mg-chlorophyll a, b, pheophytin a, b, and Cu-chlorophyll a, b in diethyl ether

    In situ detection of heavy metal substituted chlorophylls in water plants

    No full text
    The in vivo substitution of magnesium, the central atom of chlorophyll, by heavy metals (mercury, copper, cadmium, nickel, zinc, lead) leads to a breakdown in photosynthesis and is an important damage mechanism in heavy metal-stressed plants. In this study, a number of methods are presented for the efficient in situ detection of this substitution (i.e. in whole plants or in chloroplasts). While macroscopic observations point to the formation of heavy metal chlorophylls at higher concentrations, fluorescence microscopy enables the detection of this reaction at very low substitution rates. Therefore, the course of the reaction can be followed by continuously measuring the fluorescence of whole plants. Furthermore absorbance spectroscopy of whole cells or isolated chloroplasts also enables the in situ detection of heavy metal chlorophylls. These methods provide practicable approaches in detecting the formation of these compounds in situ, avoiding artefacts that might occur using extraction methods based on polar solvents. In addition to the new methods for in situ detection, an extreme heterogeneity in the reaction of cells in the same tissue upon heavy metal stress was observed: while some cells are already disintegrating, others still show normal fluorescence and photosynthetic activity. Measurements of fluorescence kinetics gave a further hint that in high light intensity a substitution of Mg by heavy metals might take place specifically in PS II reaction centres

    Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants

    No full text
    Following experiments which studied the substitution of the central ion of isolated chlorophylls by heavy metal ions in vitro, in vivo experiments with submersed water plants were carried out. It was discovered that the substitution of the central atom of chlorophyll, magnesium, by heavy metals (mercury, copper, cadmium, nickel, zinc, lead) in vivo is an important damage mechanism in stressed plants. This substitution prevents photosynthetic light-harvesting in the affected chlorophyll molecules, resulting in a breakdown of photosynthesis. The reaction varies with light intensity. In low light irradiance all the central atoms of the chlorophylls are accessible to heavy metals, with heavy metal chlorophylls being formed, some of which are much more stable towards irradiance than Mg-chlorophyll. Consequently, plants remain green even when they are dead. In high light, however, almost all chlorophyll decays, showing that under such conditions most of the chlorophylls are inaccessible to heavy metal ions

    Supplier Relationship Management in China and Taiwan : A case study with Bufab to identify the main criteria for a healthy supplier buyer relationship

    No full text
    Background: Supply chain relations go far beyond simple transactions of money and goods. Today, with a low depth of added value in most companies, and low prices in China and Taiwan, sourcing in these countries is very common. Managing the relationship with these suppliers to increase the performance of the whole supply chain is crucial. We identified the cultural dimensions of trust, power, communication and time as most influential for the supplier buyer relationship and structure our paper accordingly. Purpose: Investigate the connection between supplier relationship management (SRM) and culture. We investigated which cultural factors in Taiwan and China may hinder a relationship with a foreign buyer and what factors are drivers for a healthy relationship. Method: We conducted a case study with the company Bufab and their suppliers in China and Taiwan. After a literature review, we interviewed nine representatives from Bufab, ten suppliers and one Taiwanese professor knowledgeable in the topic. Further, we did a survey with Taiwanese and Chinese suppliers and added a European reference group to distinguish particularities. We analyzed the findings using content analysis. Conclusion: We identified that the dimensions of trust, power, communication and time are most relevant for the supplier-buyer relationship. The results show that these dimensions have a significant impact on the business relationship between a local Chinese or Taiwanese company and a foreign buyer. Managing these differences can provide the buying company with a competitive advantage

    Compartmentation and complexation of metals in hyperaccumulator plants

    Get PDF
    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs
    corecore