83 research outputs found
Optical nanofibers and spectroscopy
We review our recent progress in the production and characterization of
tapered optical fibers with a sub-wavelength diameter waist. Such fibers
exhibit a pronounced evanescent field and are therefore a useful tool for
highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist
or of the medium surrounding. We use a carefully designed flame pulling process
that allows us to realize preset fiber diameter profiles. In order to determine
the waist diameter and to verify the fiber profile, we employ scanning electron
microscope measurements and a novel accurate in situ optical method based on
harmonic generation. We use our fibers for linear and non-linear absorption and
fluorescence spectroscopy of surface-adsorbed organic molecules and investigate
their agglomeration dynamics. Furthermore, we apply our spectroscopic method to
quantum dots on the surface of the fiber waist and to caesium vapor surrounding
the fiber. Finally, towards dispersive measurements, we present our first
results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: changed title, clarification of
some points in the text, added references, replacement of Figure 13
Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01
BACKGROUND: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. METHODS: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany ((n) = 135), Spain ((n) = 133), Switzerland ((n) = 20) and the United States ((n) = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). FINDINGS: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted (p)-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. INTERPRETATION: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2
Recommended from our members
Energy and Environment Division annual report, 1977
A separate abstract was prepared for each of 66 sections of the report for the data base. (LCL
Mechanisms of heterosubtypic immunity to lethal influenza A virus infection in fully immunocompetent, T cell-depleted, beta2-microglobulin-deficient, and J chain-deficient mice
Immunity that is cross-protective between different influenza A virus subtypes (termed heterosubtypic immunity) can be demonstrated readily in some animals but only rarely in humans. Induction of heterosubtypic immunity in humans by vaccines would provide public health benefit, perhaps offering some protection against pandemics or other new influenza A strains. Therefore, we studied mechanisms mediating heterosubtypic immunity in mice. Immunization with either A/H1N1 or A/H3N2 virus protected mice against mortality following heterosubtypic challenge while providing modest reductions in lung virus titers. No cross-protection was seen with distantly related type B influenza virus. Depletion of CD4+ or CD8+ T cells or both around the time of challenge had no significant effect on survival, indicating that these cells are not required at the effector stage. beta2-microglobulin knockout mice could be protected readily against heterosubtypic challenge, confirming that class I-restricted T cells are not required. In beta2-microglobulin -/- mice, depletion of CD4+ T cells partially abrogated heterosubtypic immunity, showing that they play a role in these mice. Passive transfer of Abs to naive recipients protected against subsequent challenge with homologous but not heterosubtypic virus. Because a role for secretory Abs has been suggested, we studied dependence on the J chain, which is required for polymeric Ig receptor-mediated IgA transport. J chain knockout mice were readily protected by heterosubtypic immunity, indicating that polymeric Ig receptor-mediated transport is not required. Better understanding of heterosubtypic immunity should be valuable in analyzing new vaccines, including peptide and DNA vaccines, intended to induce broadly cross-reactive immunity
Recommended from our members
IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS
This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur
Toward scalable matrix multiply on multithreaded architectures
Abstract. We show empirically that some of the issues that affected the design of linear algebra libraries for distributed memory architectures will also likely affect such libraries for shared memory architectures with many simultaneous threads of execution, including SMP architectures and future multicore processors. The always-important matrix-matrix multiplication is used to demonstrate that a simple one-dimensional data partitioning is suboptimal in the context of dense linear algebra operations and hinders scalability. In addition we advocate the publishing of low-level interfaces to supporting operations, such as the copying of data to contiguous memory, so that library developers may further optimize parallel linear algebra implementations. Data collected on a 16 CPU Itanium2 server supports these observations.
- …