86 research outputs found

    Quantum tunneling in a three dimensional network of exchange coupled single-molecule magnets

    Full text link
    A Mn4 single-molecule magnet (SMM) is used to show that quantum tunneling of magnetization (QTM) is not suppressed by moderate three dimensional exchange coupling between molecules. Instead, it leads to an exchange bias of the quantum resonances which allows precise measurements of the effective exchange coupling that is mainly due to weak intermolecular hydrogen bounds. The magnetization versus applied field was recorded on single crystals of [Mn4]2 using an array of micro-SQUIDs. The step fine structure was studied via minor hysteresis loops.Comment: 4 pages, 4 figure

    DFT calculation of the intermolecular exchange interaction in the magnetic Mn4_4 dimer

    Full text link
    The dimeric form of the single-molecule magnet [Mn4_4O3_3Cl4_4(O2_2CEt)3_3(py)3_3]2_2 recently revealed interesting phenomena: no quantum tunneling at zero field and tunneling before magnetic field reversal. This is attributed to substantial antiferromagnetic exchange interaction between different monomers. The intermolecular exchange interaction, electronic structure and magnetic properties of this molecular magnet are calculated using density-functional theory within generalized-gradient approximation. Calculations are in good agreement with experiment.Comment: 4 page

    Thermal conductivity of sand and its effect on the temperature of Loggerhead Sea Turtle (Caretta Caretta) nests

    Full text link
    The conductivity of sand at a depth of 30–50 cm was measured at 15 sites on the beach at Captiva Island in south-west Florida which is used by nesting loggerhead turtles (Caretta caretta). The mean daily temperature of the sand was correlated with conductivity at the same depth measured the same day (r=0·611). When day to day variation was removed the correlation between nest temperature and conductivity increased to 0·694. The sand was highly variable in its grain structure. The dominant variability (80·6%) was redescribed by the first two principal components of a Principal Components Analysis (PCA). These two components were influenced mostly by percentages of large (> 1 mm) and small (< 500 μm) grains respectively. Conductivity was strongly correlated with the grain structure of the sand. The first three principal components describing sand grain structure, explained 84·1% of the variation in conductivity. Moisture content of the sand (always < 5%) was not an important factor. Sites dominated by larger grains generally had poorer conductivity and were cooler. Comparisons of eight nests to seven adjacent random sites revealed no strong evidence for directional selection in nest placement relative to sand conductivity. The variance in conductivities recorded at nests was also not significantly different from the variance at random sites

    Properties of low-lying states in some high-nuclearity Mn, Fe and V clusters: Exact studies of Heisenberg models

    Full text link
    Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for the high nuclearity spin clusters, Mn_{12}, Fe_8 and V_{15}. The largest calculation involves the Mn_{12} cluster which spans a Fock space of a hundred million. Our results show that the earlier estimates of the exchange constants need to be revised for the Mn_{12} cluster to explain the level ordering of low-lying eigenstates. In the case of the Fe_8 cluster, correct level ordering can be obtained which is consistent with the exchange constants for the already known clusters with butterfly structure. In the V_{15} cluster, we obtain an effective Hamiltonian that reproduces exactly, the eight low-lying eigenvalues of the full Hamiltonian.Comment: Revtex, 12 pages, 16 eps figures; this is the final published versio

    Observation of a Distribution of Internal Transverse Magnetic Fields in a Mn12-Based Single Molecule Magnet

    Full text link
    A distribution of internal transverse magnetic fields has been observed in single molecule magnet (SMM) Mn12-BrAc in the pure magnetic quantum tunneling (MQT) regime. Magnetic relaxation experiments at 0.4 K are used to produce a hole in the distribution of transverse fields whose angle and depth depend on the orientation and amplitude of an applied transverse ``digging field.'' The presence of such transverse magnetic fields can explain the main features of resonant MQT in this material, including the tunneling rates, the form of the relaxation and the absence of tunneling selection rules. We propose a model in which the transverse fields originate from a distribution of tilts of the molecular magnetic easy axes.Comment: 4 page

    Spin-parity dependent tunneling of magnetization in single-molecule magnets

    Full text link
    Single-molecule magnets facilitate the study of quantum tunneling of magnetization at the mesoscopic level. The spin-parity effect is among the fundamental predictions that have yet to be clearly observed. It is predicted that quantum tunneling is suppressed at zero transverse field if the total spin of the magnetic system is half-integer (Kramers degeneracy) but is allowed in integer spin systems. The Landau-Zener method is used to measure the tunnel splitting as a function of transverse field. Spin-parity dependent tunneling is established by comparing the transverse field dependence of the tunnel splitting of integer and half-integer spin systems.Comment: 4 pages, 6 figure

    Hemodynamics in a Lethal Basilar Artery Aneurysm Just before Its Rupture

    No full text
    • …
    corecore