62 research outputs found

    Functional diversification of the nematode mbd2/3 gene between Pristionchus pacificus and Caenorhabditis elegans

    Get PDF
    Abstract Background Several members of the Methyl-Binding Domain protein family link DNA methylation with chromatin remodeling complexes in vertebrates. Amongst the four classes of MBD proteins, MBD2/3 is the most highly conserved and widespread in metazoans. We have previously reported that an mbd2/3 like gene (mbd-2) is encoded in the genomes of the nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. RNAi knock-down of mbd-2 in the two Caenorhabditis species results in varying percentages of lethality. Results Here, we report that a general feature of nematode MBD2/3 proteins seems to be the lack of a bona fide methyl-binding domain. We isolated a null allele of mbd-2 in P. pacificus and show that Ppa-mbd-2 mutants are viable, fertile and display a fully penetrant egg laying defect. This egg laying defect is partially rescued by treatment with acetylcholine or nicotine suggesting a specific function of this protein in vulval neurons. Using Yeast-two-hybrid screens, Ppa-MBD-2 was found to associate with microtubule interacting and vesicle transfer proteins. Conclusion These results imply that MBD2/3 proteins in nematodes are more variable than their relatives in insects and vertebrates both in structure and function. Moreover, nematode MBD2/3 proteins assume functions independent of DNA methylation ranging from the indispensable to the non-essential.</p

    Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Get PDF
    <p>Abstract</p> <p><it>Background</it></p> <p>The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.</p> <p><it>Methods</it></p> <p>In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.</p> <p><it>Results</it></p> <p>Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.</p> <p><it>Conclusions</it></p> <p>This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.</p

    DNA Barcoding for Community Ecology - How to Tackle a Hyperdiverse, Mostly Undescribed Melanesian Fauna

    Get PDF
    Trigonopterus weevils are widely distributed throughout Melanesia and hyperdiverse in New Guinea. They are a dominant feature in natural forests, with narrow altitudinal zonation. Their use in community ecology has been precluded by the "taxonomic impediment". We sampled >6,500 specimens from seven areas across New Guinea; 1,002 specimens assigned to 270 morphospecies were DNA sequenced. Objective clustering of a refined dataset (excluding nine cryptic species) at 3% threshold revealed 324 genetic clusters (DNA group count relative to number of morphospecies = 20.0% overestimation of species diversity, or 120.0% agreement) and 85.6% taxonomic accuracy (the proportion of DNA groups that "perfectly" agree with morphology-based species hypotheses). Agreement and accuracy were best at an 8% threshold. GMYC analysis revealed 328 entities (21.5% overestimation) with 227 perfect GMYC entities (84.1% taxonomic accuracy). Both methods outperform the parataxonomist (19% underestimation; 31.6% taxonomic accuracy). The number of species found in more than one sampling area was highest in the Eastern Highlands and Huon (Sørensen similarity index 0.07, 4 shared species); ⅓ of all areas had no species overlap. Success rates of DNA barcoding methods were lowest when species showed a pronounced geographical structure. In general, Trigonopterus show high α and β-diversity across New Guinea. DNA barcoding is an excellent tool for biodiversity surveys but success rates might drop when closer localities are included. Hyperdiverse Trigonopterus are a useful taxon for evaluating forest remnants in Melanesia, allowing finer-grained analyses than would be possible with vertebrate taxa commonly used to date. Our protocol should help establish other groups of hyperdiverse fauna as target taxa for community ecology. Sequencing delivers objective data on taxa of incredible diversity but mostly without a solid taxonomic foundation and should help pave the road for the eventual formal naming of new species

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Spatial Frequency-Based Analysis of Mean Red Blood Cell Speed in Single Microvessels: Investigation of Microvascular Perfusion in Rat Cerebral Cortex

    Get PDF
    BACKGROUND: Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion during the postnatal development of central nervous system (CNS). However, the source of the hypo-perfusion and its impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine the mean red blood cell (RBC) speed through single microvessels imaged with two-photon microscopy in the cerebral cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy). METHODOLOGY/PRINCIPAL FINDINGS: We obtained a mean RBC speed (0.9±0.6 mm/sec) that ranged from 0.2 to 4.4 mm/sec from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed. These results were then compared with the conventional method for monitoring microvascular perfusion using the arteriovenous transit time (AVTT) determined by tracking fluorescent markers. A significant increase in the AVTT was observed in the exposed rats (1.9±0.6 sec) as compared to the age-matched non-exposed rats (1.2±0.3 sec). The results indicate that parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats. CONCLUSIONS/SIGNIFICANCE: The algorithm presented is simple and robust relative to monitoring individual RBC speeds, which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the conventional transit time method

    Methylation-Dependent Binding of the Epstein-Barr Virus BZLF1 Protein to Viral Promoters

    Get PDF
    The switch between latent and lytic Epstein-Barr virus (EBV) infection is mediated by the viral immediate-early (IE) protein, BZLF1 (Z). Z, a homologue of c-jun that binds to AP1-like motifs (ZREs), induces expression of the BRLF1 (R) and BRRF1 (Na) viral proteins, which cooperatively activate transcription of the Z promoter and thereby establish a positive autoregulatory loop. A unique feature of Z is its ability to preferentially bind to, and activate, the methylated form of the BRLF1 promoter (Rp). To date, however, Rp is the only EBV promoter known to be regulated in this unusual manner. We now demonstrate that the promoter driving transcription of the early BRRF1 gene (Nap) has two CpG-containing ZREs (ACGCTCA and TCGCCCG) that are only bound by Z in the methylated state. Both Nap ZREs are highly methylated in cells with latent EBV infection. Z efficiently activates the methylated, but not unmethylated, form of Nap in reporter gene assays, and both ZREs are required. Z serine residue 186, which was previously shown to be required for Z binding to methylated ZREs in Rp, but not for Z binding to the AP1 site, is required for Z binding to methylated Nap ZREs. The Z(S186A) mutant cannot activate methylated Nap in reporter gene assays and does not induce Na expression in cells with latent EBV infection. Molecular modeling studies of Z bound to the methylated Nap ZREs help to explain why methylation is required for Z binding, and the role of the Z Ser186 residue. Methylation-dependent Z binding to critical viral promoters may enhance lytic reactivation in latently infected cells, where the viral genome is heavily methylated. Conversely, since the incoming viral genome is initially unmethylated, methylation-dependent Z activation may also help the virus to establish latency following infection

    The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni

    Get PDF
    BBSRC Grant (BB/K005448/1)Background The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail?s response to infection. Methodology/Principle findings Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail?s DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species? genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). Conclusions/Significance The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategiespublishersversionPeer reviewe

    Xist regulation and function eXplored

    Get PDF
    X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI
    corecore