29,415 research outputs found

    A comparison of measured and theoretical predictions for STS ascent and entry sonic booms

    Get PDF
    Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location

    Methods of extending signatures and training without ground information

    Get PDF
    Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken

    Correlation of predicted and measured sonic boom characteristics from the reentry of STS-1 orbiter

    Get PDF
    Characteristics from sonic boom pressure signatures recorded at 11 locations during reentry of the Space Shuttle Orbiter Columbia are correlated with characteristics of wind tunnel signatures extrapolated from flight altitudes for Mach numbers ranging from 1.23 to 5.87. The flight pressure signature were recorded by microphones positioned at two levels near the descent groundtrack along the California corridor. The wind tunnel signatures used in theoretical predictions were measured using a 0.0041-scale model Orbiter. The mean difference between all measured and predicted overpressures is 12 percent from measured levels. With one exception, the flight signatures are very similar to theoretical n-waves

    Cargo/Logistics Airlift System Study (CLASS), Volume 2

    Get PDF
    Air containerization is discussed in terms of lower freight rates, size and pallet limitations, refrigeration, backhaul of empties, and ownership. It is concluded that there is a need for an advance air cargo system as indicated by the industry/transportation case studies, and a stimulation of the air cargo would result in freight rate reductions

    Cargo/Logistics Airlift System Study (CLASS), Volume 1

    Get PDF
    Current and advanced air cargo systems are evaluated using industrial and consumer statistics. Market and commodity characteristics that influence the use of the air mode are discussed along with a comparison of air and surface mode on typical routes. Results of on-site surveys of cargo processing facilities at airports are presented, and institutional controls and influences on air cargo operations are considered

    Cargo/Logistics Airlift System Study (CLASS), Executive Summary

    Get PDF
    The current air cargo system is analyzed along with advanced air cargo systems studies. A forecast of advanced air cargo system demand is presented with cost estimates. It is concluded that there is a need for a dedicated advance air cargo system, and with application of advanced technology, reductions of 45% in air freight rates may be achieved

    A general low frequency acoustic radiation capability for NASTRAN

    Get PDF
    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads
    corecore