74 research outputs found

    Two-state teleportation

    Get PDF
    Quantum teleportation with additional a priori information about the input state achieves higher fidelity than teleportation of a completely unknown state. However, perfect teleportation of two non-orthogonal input states requires the same amount of entanglement as perfect teleportation of an unknown state, namely one ebit. We analyse how well two-state teleportation can be achieved using every degree of pure-state entanglement, and discuss the fidelity of `teleportation' that can be achieved with only classical communication but no shared entanglement. A two-state telecloning scheme is constructed.Comment: 20 pages, 6 figure

    Foundations of Quantum Discord

    Full text link
    This paper summarizes the basics of the notion of quantum discord and how it relates to other types of correlations in quantum physics. We take the fundamental information theoretic approach and illustrate our exposition with a number of simple examples.Comment: 3 pages, special issue edited by Diogo de Oliveira Soares Pinto et a

    Extracting Classical Correlations from a Bipartite Quantum System

    Get PDF
    In this paper we discuss the problem of splitting the total correlations for a bipartite quantum state described by the Von Neumann mutual information into classical and quantum parts. We propose a measure of the classical correlations as the difference between the Von Neumann mutual information and the relative entropy of entanglement. We compare this measure with different measures proposed in the literature.Comment: 5 pages, 1 figur

    The elusive source of quantum effectiveness

    Full text link
    We discuss two qualities of quantum systems: various correlations existing between their subsystems and the distingushability of different quantum states. This is then applied to analysing quantum information processing. While quantum correlations, or entanglement, are clearly of paramount importance for efficient pure state manipulations, mixed states present a much richer arena and reveal a more subtle interplay between correlations and distinguishability. The current work explores a number of issues related with identifying the important ingredients needed for quantum information processing. We discuss the Deutsch-Jozsa algorithm, the Shor algorithm, the Grover algorithm and the power of a single qubit class of algorithms. One section is dedicated to cluster states where entanglement is crucial, but its precise role is highly counter-intuitive. Here we see that distinguishability becomes a more useful concept.Comment: 8 pages, no figure

    High Temperature Macroscopic Entanglement

    Full text link
    In this paper I intend to show that macroscopic entanglement is possible at high temperatures. I analyze multipartite entanglement produced by the η\eta pairing mechanism which features strongly in the fermionic lattice models of high TcT_c superconductivity. This problem is shown to be equivalent to calculating multipartite entanglement in totally symmetric states of qubits. I demonstrate that we can conclusively calculate the relative entropy of entanglement within any subset of qubits in an overall symmetric state. Three main results then follow. First, I show that the condition for superconductivity, namely the existence of the off diagonal long range order (ODLRO), is not dependent on two-site entanglement, but on just classical correlations as the sites become more and more distant. Secondly, the entanglement that does survive in the thermodynamical limit is the entanglement of the total lattice and, at half filling, it scales with the log of the number of sites. It is this entanglement that will exist at temperatures below the superconducting critical temperature, which can currently be as high as 160 Kelvin. Thirdly, I prove that a complete mixture of symmetric states does not contain any entanglement in the macroscopic limit. On the other hand, the same mixture of symmetric states possesses the same two qubit entanglement features as the pure states involved, in the sense that the mixing does not destroy entanglement for finite number of qubits, albeit it does decrease it. Maximal mixing of symmetric states also does not destroy ODLRO and classical correlations. I discuss various other inequalities between different entanglements as well as generalizations to the subsystems of any dimensionality (i.e. higher than spin half).Comment: 14 pages, no figure

    Teleportation as a Depolarizing Quantum Channel, Relative Entropy and Classical Capacity

    Get PDF
    We show that standard teleportation with an arbitrary mixed state resource is equivalent to a generalized depolarizing channel with probabilities given by the maximally entangled components of the resource. This enables the usage of any quantum channel as a generalized depolarizing channel without additional twirling operations. It also provides a nontrivial upper bound on the entanglement of a class of mixed states. Our result allows a consistent and statistically motivated quantification of teleportation success in terms of the relative entropy and this quantification can be related to a classical capacity.Comment: Version published in Phys. Rev. Let

    Mean Field Approximations and Multipartite Thermal Correlations

    Full text link
    The relationship between the mean-field approximations in various interacting models of statistical physics and measures of classical and quantum correlations is explored. We present a method that allows us to bound the total amount of correlations (and hence entanglement) in a physical system in thermal equilibrium at some temperature in terms of its free energy and internal energy. This method is first illustrated using two qubits interacting through the Heisenberg coupling, where entanglement and correlations can be computed exactly. It is then applied to the one dimensional Ising model in a transverse magnetic field, for which entanglement and correlations cannot be obtained by exact methods. We analyze the behavior of correlations in various regimes and identify critical regions, comparing them with already known results. Finally, we present a general discussion of the effects of entanglement on the macroscopic, thermodynamical features of solid-state systems. In particular, we exploit the fact that a dd dimensional quantum system in thermal equilibrium can be made to corresponds to a d+1 classical system in equilibrium to substitute all entanglement for classical correlations.Comment: 17 pages, 6 figure

    Classical, quantum and total correlations

    Get PDF
    We discuss the problem of separating consistently the total correlations in a bipartite quantum state into a quantum and a purely classical part. A measure of classical correlations is proposed and its properties are explored.Comment: 10 pages, 3 figure

    Effects of environmental parameters to total, quantum and classical correlations

    Get PDF
    We quantify the total, quantum, and classical correlations with entropic measures, and quantitatively compare these correlations in a quantum system, as exemplified by a Heisenberg dimer which is subjected to the change of environmental parameters: temperature and nonuniform external field. Our results show that the quantum correlation may exceed the classical correlation at some nonzero temperatures, though the former is rather fragile than the later under thermal fluctuation. The effect of the external field to the classical correlation is quite different from the quantum correlation.Comment: 6 pages, 4 figure

    Dynamics of Atom-Atom Correlations in the Fermi problem

    Get PDF
    We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain where two atoms, the first initially excited and the second prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon and various kinds of quantum correlations between the two are generated during this process. Among these, prominent examples are given by entanglement, quantum discord and nonlocal correlations. It is the aim of this paper to analyze the role of the light cone in the emergence of such correlations.Comment: 14 pages, 7 figure
    corecore