36,481 research outputs found

    Effect of wing pivot location on longitudinal aerodynamic characteristics of a variable sweep wing having an M planform

    Get PDF
    Wing pivot location effect on longitudinal aerodynamic characteristics of variable sweep wing having M planfor

    Range Separated Brueckner Coupled Cluster Doubles Theory

    Get PDF
    We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly-correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e. the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.Comment: 5 pages, 3 figs. Now with supplementary info. Comments welcome: [email protected]

    High-Frequency Microstrip Cross Resonators for Circular Polarization EPR Spectroscopy

    Get PDF
    In this article we discuss the design and implementation of a novel microstrip resonator which allows for the absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Ohms impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled through small gaps to three arms of the cross to connect the resonator to the excitation ports. The control of the relative magnitude and phase between the two microwave stimuli at the input ports of each line allows for tuning the degree and type of polarization of the microwave excitation at the center of the cross resonator. The third (output) port is used to measure the transmitted signal, which is crucial to work at low temperatures, where reflections along lengthy coaxial lines mask the signal reflected by the resonator. EPR spectra recorded at low temperature in an S= 5/2 molecular magnet system show that 82%-fidelity circular polarization of the microwaves is achieved over the central area of the resonator.Comment: Published in Review of Scientific Instrument

    Yeletnye, The Language of Rossel Island

    Get PDF

    Fabrication of Nano-Gapped Single-Electron Transistors for Transport Studies of Individual Single-Molecule Magnets

    Get PDF
    Three terminal single-electron transistor devices utilizing Al/Al2O3 gate electrodes were developed for the study of electron transport through individual single-molecule magnets. The devices were patterned via multiple layers of optical and electron beam lithography. Electromigration induced breaking of the nanowires reliably produces 1-3 nm gaps between which the SMM can be situated. Conductance through a single Mn12(3-thiophenecarboxylate) displays the coulomb blockade effect with several excitations within +/- 40 meV.Comment: 10 pages, 5 figure

    Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory

    Get PDF
    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a correct bosonization in the sense that the wavefunction and Hilbert space are exactly fermionic. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA an d qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective
    corecore